Перевод: с английского на русский

с русского на английский

(углерода в печи)

  • 1 pickup

    ['pɪkʌp]
    3) Военный термин: получение, приём, эвакуация (десанта), погрузка и эвакуация (десанта), получение (предметов снабжения)
    4) Техника: датчик (первичный), захват, захватывающее приспособление, звукосниматель, измерительный преобразователь, налипание, перенос (материала при трении), плена от насечки валков, подхватывание (ывание), пригар (углерода в печи), прилипание (флюса), раскладчик, схватывание, приёмистость (двигателя), наводка (перекрёстная помеха), порог срабатывания (реле), поглощение (углерода в печи)
    5) Сельское хозяйство: подборщик, сбор (напр. яиц)
    6) Строительство: пикап (автомобиль)
    7) Экономика: наращивание, оживление, оживление в экономике, подъем, прибыль, полученная в результате покупки одних облигаций и одновременной продажи других, вывоз (груза)
    9) Кино: микрофон
    11) Металлургия: задир, подбирание, налипание (напр. металла изделия на штамп), поглощение (напр. углерода в плавильной печи)
    14) Телекоммуникации: ТВ-камера, погрузка, принимать
    16) Сленг: встречный, выпивка на скорую руку, выпивка на ходу, еда или выпивка на ходу, еда на скорую руку, еда на ходу, способность мгновенно развивать максимальную скорость, выпивка как допинг (обычно сахар, кофеин, алкоголь), еда как допинг (обычно сахар, кофеин, алкоголь), восстановление сил, незапланированный, неожиданный, что-либо съесть или выпить, чтобы поддержать себя, знакомство с кем-либо с сексуальной целью, способность автомобиля быстро разгоняться, "подбросить" на машине, арест, еда или выпивка на скорую руку, мощность автомобильного двигателя, наркотическое опьянение, незнакомец, неожиданное увеличение скорости, приобретение по случаю, тот, с кем знакомятся исключительно для секса, удачная покупка, улучшение, еда или выпивка как допинг (обычно сахар, кофеин, алкоголь)
    24) Инвестиции: рост
    25) Полимеры: захватывание, перехват, приёмное устройство, привес (напр. ткани при пропитке)
    26) Автоматика: захватное устройство, срабатывание (напр. контакта), захват (ывание)
    27) Кабельные производство: захват (воды, воздуха, пыли, газа)
    28) Общая лексика: измерение (давления), штуцер измерения (давления масла - место подсоединения манометра, датчика температуры охлаждающей жидкости и т.д.), контрольная точка (давления, температуры), разъём (для подсоединения лампы, и т.д.), считывание (сигнала), контрольное отверстие (частоты вращения двигателя)
    30) Безопасность: перехват (излучений, информации), съём (излучений, информации), устройство съёма (излучений, информации)
    31) Электротехника: срабатывание (реле)

    Универсальный англо-русский словарь > pickup

  • 2 pickup

    1) захват(ывание); подхватывание
    3) налипание (металла, изделия на штамп); прилипание ( флюса)
    6) геофиз. сейсмоприёмник
    10) звукосниматель, адаптер
    16) считывание, съём ( сигнала), выделение ( сигнала)
    -
    ac pickup
    -
    acceleration pickup
    -
    acoustic pickup
    -
    capacitance pickup
    -
    capacitive pickup
    -
    capacitor pickup
    -
    carbon pickup
    -
    ceramic pickup
    -
    collet pickup
    -
    condenser pickup
    -
    connecting pickup
    -
    core pickup
    -
    crystal pickup
    -
    die pickup
    -
    direct pickup
    -
    displacement pickup
    -
    dual pickup
    -
    electrohydraulic pickup
    -
    electromagnetic pickup
    -
    electromechanical pickup
    -
    filling pickup
    -
    film pickup
    -
    front-end pickup
    -
    gas pickup
    -
    gramophone pickup
    -
    high-tension pickup
    -
    hum pickup
    -
    hydrogen pickup
    -
    inductance pickup
    -
    light-beam pickup
    -
    load pickup
    -
    magnetic pickup
    -
    morning pickup
    -
    movable vibration pickup
    -
    moving-coil pickup
    -
    negative torque pickup
    -
    noise pickup
    -
    noncontacting pickup
    -
    noncontact pickup
    -
    phonograph pickup
    -
    photoelectric pickup
    -
    piezoelectric pickup
    -
    potentiometric pickup
    -
    pressure pickup
    -
    reference vibration pickup
    -
    remote pickup
    -
    resistance pickup
    -
    seismic pickup
    -
    sheet pickup
    -
    signal pickup
    -
    stereophonic pickup
    -
    stereo pickup
    -
    synchro pickup
    -
    telephone pickup
    -
    television pickup
    -
    turnover pickup
    -
    vacuum pickup
    -
    variable induction pickup
    -
    velocity pickup
    -
    vibration pickup
    -
    vision pickup
    -
    voltage pickup

    Англо-русский словарь технических терминов > pickup

  • 3 поглощение

    Англо-русский словарь технических терминов > поглощение

  • 4 NiO

    1. Спектральный метод определения никеля, алюминия, магния, марганца, кобальта, олова, меди и циркония в ниобии

    4.2. Спектральный метод определения никеля, алюминия, магния, марганца, кобальта, олова, меди и циркония в ниобии

    Спектральному методу предшествует перевод анализируемой пробы в пятиокись ниобия.

    Метод основан на измерении интенсивности линий элементов примесей в спектре, полученном при испарении пятиокиси ниобия в смеси с графитовым порошком и хлористым натрием из канала графитового электрода в дуге постоянного тока.

    Массовую долю примесей в ниобии (табл. 4) определяют по градуировочным графикам, построенным в координатах: логарифм отношения интенсивности линии определяемого элемента и интенсивности фона (x004.gif) - логарифм концентрации определяемого элемента (lg C).

    4.2.1. Аппаратура, материалы и реактивы

    Спектрограф дифракционный типа ДФС-13 с решеткой 600 и 1200 штр/мм и трехлинзовой системой освещения щели или аналогичный прибор (фотоэлектрический прибор типа МФС). Допускается использовать спектрограф ДФС-8 с решеткой 1800 штрихов.

    Генератор дуговой типа ДГ-2 с дополнительным реостатом или генератор аналогичного типа.

    Выпрямитель 250 - 300 В, 30 - 50 А.

    Микрофотометр нерегистрирующий типа МФ-2 или аналогичного типа.

    Таблица 4

    Определяемая примесь

    Массовая доля примеси, %

    Никель

    1∙10-3 - 2∙10-2

    Алюминий

    5∙10-4 - 1∙10-2

    Магний

    1∙10-3 - 2∙10-3

    Марганец

    5∙10-4 - 5∙10-3

    Кобальт

    5∙10-4 - 3∙10-2

    Олово

    1∙10-3 - 1∙10-2

    Медь

    3∙10-3 - 5∙10-2

    Цирконий

    1∙10-3 - 2∙10-2

    Спектропроектор типа ПС-18, СП-2 или аналогичного типа.

    Весы аналитические.

    Весы торсионные типа ВТ-500.

    Ступка и пестик из органического стекла.

    Бокс из органического стекла.

    Электропечь муфельная с терморегулятором на температуру до 900 °С.

    Чашки платиновые.

    Станок для заточки графитовых электродов.

    Электроды графитовые, выточенные из графитовых стержней ОС. Ч. 7 - 3 диаметром 6 мм, заточенные на усеченный конус с площадкой диаметром 1,5 мм.

    Электроды графитовые, выточенные из графитовых стержней ОС. Ч. 7 - 3 диаметром 6 мм, с каналом глубиной 5 мм, внешний диаметр - 3,0 мм, внутренний диаметр - 2,0 мм, длина заточенной части - 6 мм.

    Порошок графитовый ОС. Ч. 8 - 4 по ГОСТ 23463-79.

    Фотопластинки спектрографические марок СПЭС и СП-2, размером 9´12/1,2 или 13´18/1,2, обеспечивающие нормальное почернение аналитических линий и близлежащего фона в спектре.

    Лампа инфракрасная ИКЗ-500 с регулятором напряжения РНО-250-0,5 или аналогичным.

    Спирт этиловый ректификованный по ГОСТ 18300-72, дважды перегнанный в кварцевом приборе.

    Никеля окись черная по ГОСТ 4331-78, ч.

    Алюминия окись безводная для спектрального анализа, х. ч.

    Магния окись по ГОСТ 4526-75, ч. д. а.

    Марганца (IV) окись по ГОСТ 4470-79, ч. д. а.

    Кобальта (II - III) окись по ГОСТ 4467-79, ч. или ч. д. а.

    Олова двуокись, ч. д. а.

    Циркония двуокись по ГОСТ 21907-76.

    Меди (II) окись по ГОСТ 16539-79.

    Натрий хлористый ОС. Ч. 6 - 1.

    Ниобия пятиокись, в которой содержание определяемых элементов не превышает установленной для метода нижней границы диапазона определяемых массовых долей.

    Проявитель:

    метол........................................................................................ 2,2 г

    натрий сернистокислый безводный по ГОСТ 195-77......... 96 г

    гидрохинон по ГОСТ 19627-74............................................. 8,8 г

    натрий углекислый по ГОСТ 83-79...................................... 48 г

    калий бромистый по ГОСТ 4160-74..................................... 5 г

    вода........................................................................................... до 1000 см3.

    Фиксаж:

    тиосульфат натрия кристаллический по СТ СЭВ 223-75... 300 г

    аммоний хлористый по ГОСТ 3773-72................................ 20 г

    вода........................................................................................... до 1000 см3.

    4.2.2. Приготовление буферной смеси

    Буферную смесь, состоящую из 90 % угольного порошка и 10 % хлористого натрия готовят, смешивая 0,9000 г угольного порошка и 0,1000 г хлористого натрия с 20 см3 спирта в течение 30 мин и высушивая под инфракрасной лампой.

    4.2.3. Приготовление образцов сравнения (ОС)

    Основной образец сравнения, содержащий по 1 % никеля, алюминия, магния, марганца, кобальта, олова, циркония и меди, готовят механическим истиранием и перемешиванием буферной смеси с окислами соответствующих металлов.

    Навески массой 0,0141 г окиси никеля, 0,0189 г окиси алюминия, 0,0186 г окиси магния, 0,0158 г окиси марганца (IV) 0,0136 г (II - III)-окиси кобальта, 0,0127 г двуокиси олова, 0,0125 г окиси меди и 0,0140 г двуокиси циркония помещают в ступке из органического стекла и добавляют 0,8818 г буферной смеси. Смесь тщательно перемешивают, добавляя спирт для поддержания смеси в кашицеобразном состоянии, в течение 1 ч и высушивают под инфракрасной лампой до постоянной массы.

    Последовательным разбавлением основного образца сравнения буферной смесью готовят серию образцов сравнения (ОС) с убывающей концентрацией определяемых элементов. Содержание каждой из определяемых примесей (в процентах на содержание металла в металлическом ниобии) и вводимые в смесь навески буферной смеси и разбавляемого образца приведены в табл. 5.

    Образцы сравнения хранят в полиэтиленовых банках с крышками.

    Таблица 5

    Обозначение образца

    Массовая доля каждой из определяемых примесей, %

    Масса навески, г

    буферной смеси

    разбавляемого образца

    ОС 1

    1∙10-1

    3,3930

    0,3770 (основной образец)

    ОС 2

    5∙10-2

    1,7700

    1,7700 (ОС 1)

    ОС 3

    2∙10-2

    2,3100

    1,5400 (ОС 2)

    ОС 4

    1∙10-2

    1,8500

    1,8500 (ОС 3)

    ОС 5

    5∙10-3

    1,7000

    1,7000 (ОС 4)

    ОС 6

    2∙10-3

    2,1000

    1,4000 (ОС 5)

    ОС 7

    1∙10-3

    1,5000

    1,5000 (ОС 6)

    ОС 8

    5∙10-4

    1,0000

    1,0000 (ОС 7)

    4.1.2 - 4.2.3. (Измененная редакция, Изм. № 1).

    4.2.4. Проведение анализа

    4.2.4.1. Перевод металлического ниобия в пятиокись ниобия

    Пробу металлического ниобия 1 - 3 г помещают в платиновую чашку и прокаливают в муфельной печи при температуре 800 - 900 °С в течение 2 ч. Полученную пятиокись ниобия в виде белого порошка охлаждают в эксикаторе, помещают в пакет из кальки к передают на спектральный анализ.

    4.2.4.2. Определение никеля, алюминия, магния, марганца, кобальта, олова, меди и циркония

    Пробы и образцы сравнения готовят в боксе. Для этого 100 мг пробы и 100 мг буферной смеси или 100 мг образца сравнения и 100 мг пятиокиси ниобия тщательно растирают в плексигласовой ступке в течение 5 мин. Подготовленную пробу или образец сравнения набивают в каналы трех графитовых электродов, предварительно обожженных в дуге постоянного тока при 7 А в течение 5 с.

    Электроды устанавливают в штатив в вертикальном положении. Верхним электродом служит графитовый стержень, заточенный на конус. Между электродами зажигают дугу постоянного тока силой 7 А с последующим повышением (в течение 20 с) до 15 А. Электрод с пробой включен анодом.

    Во избежание выброса материала из кратера электродов, ток включают при сомкнутых электродах с их последующим разведением, величина которого контролируется по проекции на промежуточной диафрагме. Время экспозиции - 120 с, промежуточная диафрагма - 5 мм.

    Спектры в области длин волн 2500 - 3500 нм фотографируют с помощью спектрографа ДФС-13 с решеткой 600 штр/мм, используя трехлинзовую систему освещения щели на фотопластинку тип II чув. 15 ед., ширина щели спектрографа 15 мкм.

    4.2.4.3. Определение меди

    Пробу, приготовленную по п. 4.2.4.2, помещают в канал графитового электрода. Электрод с пробой или образцом сравнения служит анодом (нижний электрод). Верхним электродом является графитовый электрод, заточенный на конус. Между электродами зажигают дугу постоянного тока. В первые 15 с сила тока - 5 А, последующие 1 мин 45 с - 15 А. Полная экспозиция 120 с. Спектры фотографируют на спектрографе ДФС-13 с решеткой 1200 штр/мм с трехлинзовой осветительной системой. Фотопластинка типа ЭС чув. 9. Промежуточная диафрагма 0,8 мм. Шкалу длин волн устанавливают на 320 нм. Ширина щели спектрографа 15 мкм. Во время экспозиции расстояние между электродами поддерживают равным 3 мм.

    Спектр каждой пробы и каждого образца сравнения регистрируют на фотопластинке по три раза. Экспонированные пластинки проявляют, промывают водой, фиксируют, окончательно промывают и сушат.

    4.2.4.1 - 4.2.4.3. (Измененная редакция, Изм. № 1).

    4.2.4.4. Обработка результатов

    В каждой спектрограмме фотометрируют почернения аналитической линии определяемого элемента Sл+ф (табл. 6) и близлежащего фона Sф и вычисляют разность почернений DS = Sл+a - Sф.

    Таблица 6

    Определяемый элемент

    Длина волны аналитической линии, нм

    Алюминий

    309,2

    Магний

    279,5

    Марганец

    279,4

    Медь

    327,4

    Олово

    284,0

    Цирконий

    339,2

    Никель

    300,2

    Кобальт

    304,4

    По трем параллельным значениям DS1, DS2, DS3, полученным по трем спектрограммам, снятым для каждого образца, находят среднее арифметическое результатов x006.gif.

    От полученных средних значений x008.gif переходят к значениям x009.gif с помощью таблиц, приведенных в приложении к ГОСТ 13637.1-77.

    Используя значения lg C и x010.gif для образцов сравнения, строят градуировочный график в координатах x011.gif, lg C. По этому графику по значениям x012.gif для пробы определяют содержание примеси в пробе.

    Разность наибольших и наименьших из результатов трех параллельных и результатов двух анализов с доверительной вероятностью Р = 0,95 не должна превышать величин допускаемых расхождений, приведенных в табл. 7.

    Таблица 7

    Определяемый элемент

    Массовая доля, %

    Допускаемое расхождение, %

    параллельных определений

    результатов анализов

    Алюминий

    0,0005

    0,005

    0,01

    0,0003

    0,003

    0,006

    0,0002

    0,002

    0,004

    Цирконий

    0,001

    0,005

    0,01

    0,0006

    0,003

    0,005

    0,0004

    0,002

    0,003

    Магний

    0,001

    0,005

    0,01

    0,0006

    0,004

    0,006

    0,0001

    0,003

    0,004

    Марганец

    0,0005

    0,005

    0,01

    0,0003

    0,003

    0,006

    0,0002

    0,002

    0,004

    Медь

    0,005

    0,01

    0,06

    0,003

    0,003

    0,006

    0,02

    0,002

    0,002

    0,003

    0,01

    0,002

    Олово

    0,001

    0,005

    0,01

    0,0006

    0,003

    0,005

    0,0004

    0,002

    0,003

    Никель

    0,001

    0,005

    0,001

    0,0006

    0,003

    0,005

    0,0004

    0,002

    0,003

    Кобальт

    0,0005

    0,005

    0,01

    0,0003

    0,003

    0,005

    0,0002

    0,002

    0,003

    Допускаемые расхождения для промежуточных содержаний рассчитывают методом линейной интерполяции.

    4.2.4.5. Контроль правильности результатов

    Правильность результатов анализа серии проб контролируют для каждой определенной примеси при переходе к новому комплекту образцов сравнения, С этой целью для одной и той же пробы, содержащей определенную примесь в контролируемом диапазоне концентраций с использованием старого и нового комплектов образцов сравнения, получают четыре результата анализа и вычисляют средние арифметические значения. Затем находят разность большего и меньшего значений. Результаты анализа считают правильными, если указанная разность не превышает допускаемых расхождений результатов двух анализов пробы по содержанию определяемой примеси.

    Контроль правильности проводят для каждого интервала между ближайшими по содержанию образцами сравнения по мере поступления на анализ соответствующих проб.

    4.3. Массовую долю тантала, титана, кремния, железа, вольфрама, молибдена определяют по ГОСТ 18385.1-79 - ГОСТ 18385.4-79 или спектральными методами (пп. 4.3.1 - 4.3.3), кислорода и водорода - по ГОСТ 22720.1-77, азота - по ГОСТ 22720.1-77 или ГОСТ 22720.4-77.

    Допускается применять другие методы анализа примесей, по точности не уступающие указанным.

    При разногласиях в оценке химического состава его определяют по ГОСТ 18385.1-79 - ГОСТ 18385.4-79, ГОСТ 22720.1-77, ГОСТ 22720.1-77 и ГОСТ 22720.4-77.

    Массовую долю углерода определяют по ГОСТ 22720.3-77. Кроме анализатора АН-160, допускается использовать приборы АН-7529 и АН-7560.

    4.2.4.4. - 4.3. (Измененная редакция, Изм. № 1).

    4.3.1. Спектральный метод определения примесей титана, кремния, железа, никеля, алюминия, магния, марганца, олова, меди, циркония, при массовой доле каждой примеси от 0,001 до 0,02.

    Метод основан на возбуждении дугой постоянного тока и фотографической регистрации спектров образцов сравнения и спектров анализируемого материала, превращенного в оксиды прокаливанием, с последующим определением массовой доли примесей по градуировочным графикам, построенным в координатах: логарифм отношения интенсивности линии определяемого элемента к интенсивности фона lg(Iл/Iф) - логарифм массовой доли определяемого элемента lg C.

    Относительное среднее квадратическое отклонение, характеризующее сходимость результатов параллельных определений, при массовой доле каждой примеси 0,001 % составляет 0,15, при массовой доле каждой примеси 0,02 % - 0,11.

    Суммарная погрешность результата анализа с доверительной вероятностью Р = 0,95 при массовой доле примеси 0,00100 % не должна превышать ± 0,00023 % абс, при массовой доле примеси 0,0200 % - ± 0,0033 % абс.

    4.3.1.1. Аппаратура, материалы и реактивы

    Спектрограф ДФС-13 с решеткой 1200 штр/мм или аналогичный.

    Источник постоянного тока УГЭ, или ВАС-275-100, или аналогичный.

    Микроденситометр МД-100, или микрофотометр МФ-2, или аналогичный.

    Спектропроектор типа ПС-18, или ДСП-2, или аналогичный.

    Весы аналитические с погрешностью взвешивания не более 0,0002 г.

    Весы торсионные ВТ-500 или аналогичные с погрешностью взвешивания не более 0,002 г.

    Печь муфельная с терморегулятором, на температуру от 400 до 1100 °С.

    Шкаф сушильный типа СНОД 3.5.3.5.3.5./3М или аналогичный.

    Станок для заточки графитовых электродов.

    Ступки и пестики из оргстекла.

    Чашки платиновые по ГОСТ 6563-75.

    Фотопластинки спектральные: диапозитивные, СП-2, СП-ЭС, обеспечивающие в условиях анализа нормальные почернения аналитических линий и близлежащего фона в спектре.

    Порошок графитовый ос. ч. 8 - 4 по ГОСТ 23463-79 или аналогичный, обеспечивающий чистоту по определяемым примесям. Нижние электроды, выточенные из графитовых стержней ос. ч. 7 - 3 диаметром 6 мм, имеющие размеры, мм:

    высота заточенной части....................... 10

    диаметр заточенной части.................... 4,0

    глубина кратера...................................... 3,8

    диаметр кратера..................................... 2,5

    Верхние электроды из графитовых стержней ос. ч. 7 - 3 диаметром 6 мм, заточенные на усеченный конус с площадкой диаметром 1,5 мм, высотой заточенной конической части 4 мм.

    Натрий фтористый, ос. ч. 7 - 3.

    Ниобия пятиокись для оптического стекловарения, ос. ч. 7 - 3.

    Титана (IV) двуокись, ос. ч. 7 - 3.

    Кремния (IV) двуокись по ГОСТ 9428-73, ч. д. а.

    Железа (III) окись, ос. ч. 2 - 4.

    Никеля (II) закись, ч. д. а.

    Алюминия (III) окись, х. ч.

    Магния (II), ч. д. а.

    Марганца (IV) окись, ос. ч. 9 - 2.

    Олова (IV) окись, ч. д. а.

    Меди (II) окись (гранулированная) по ГОСТ 16539-79.

    Циркония (IV) двуокись, ос. ч. 6 - 2.

    Спирт этиловый ректификованный по ГОСТ 18300-87.

    Лак идитоловый, 1 %-ный спиртовый раствор.

    Метол по ГОСТ 25664-83.

    Гидрохинон по ГОСТ 19627-74.

    Натрий сернистокислый (сульфит) по ГОСТ 195-77.

    Натрий углекислый по ГОСТ 83-79.

    Калий бромистый по ГОСТ 4160-74.

    Натрия тиосульфат кристаллический по ГОСТ 244-76.

    Калий сернистокислый пиро (метабисульфит).

    Вода дистиллированная по ГОСТ 6709-72.

    Проявитель, готовят следующим образом: 2 г метола, 52 г сульфита натрия, 10 г гидрохинона, 40 г углекислого натрия, 5 г бромистого калия растворяют в воде, в указанной последовательности доводят объем раствора водой до 1000 см3, перемешивают и фильтруют.

    Фиксаж, готовят следующим образом: 250 г тиосульфата натрия и 25 г метабисульфита калия растворяют в указанной последовательности в 750 - 800 см3 воды, доводят объем раствора водой до 1000 см3, перемешивают и фильтруют.

    Допускается применять проявитель и фиксаж, рекомендованные для применяемых фотопластинок.

    Основная смесь, представляющая собой механическую смесь оксида ниобия и оксидов определяемых элементов с массовой долей каждой примеси 1 % в расчете на содержание металла в смеси металлов. Для ее приготовления каждый препарат оксида помещают в отдельную чашку, прокаливают в течение 90 мин в муфельной печи при температурах, указанных в табл. 7, охлаждают в эксикаторе и берут навески, указанные в табл. 7а. Переносят в ступку сначала приблизительно одну четвертую часть навески пятиокиси ниобия, затем полностью навески оксидов всех элементов-примесей и тщательно растирают смесь в ступке в течение 60 мин, добавляя спирт для поддержания смеси в кашицеобразном состоянии. Затем в ту же ступку переносят оставшуюся часть навески пятиокиси ниобия и опять тщательно растирают смесь в течение 60 мин, добавляя спирт для поддержания смеси в кашицеобразном состоянии. После этого смесь сушат в сушильном шкафу, а затем прокаливают при температуре (400 ± 20) °С в течение 60 мин и охлаждают в эксикаторе.

    Промежуточная смесь и рабочие образцы сравнения (РОС1 - РОС4); готовят, смешивая указанные в табл. 7б массы пятиокиси ниобия, основной смеси, промежуточной смеси и рабочего образца сравнения РОС2. Перед взятием навесок пятиокись ниобия прокаливают 90 мин при (950 ± 20) °С, а ОС, ПС и РОС2 - при температуре (400 ± 20) °С в течение 60 мин и охлаждают в эксикаторе. Смешивают тщательным растиранием в ступке в течение 60 мин, добавляя спирт для поддержания смеси в кашицеобразном состоянии. После этого смесь сушат в сушильном шкафу, прокаливают при температуре (400 ± 20) °С в течение 60 мин и охлаждают в эксикаторе.

    Буферная смесь 95 % графитового порошка и 5 % фтористого натрия. Навески помещают в ступку и тщательно растирают в течение 30 мин.

    4.3.1.2. Проведение анализа

    Навеску порошка металлического ниобия массой 0,5 г помещают в платиновую чашку, прокаливают в муфельной печи при температуре 800 - 850 °С в течение 2 ч и охлаждают в эксикаторе. Переносят в ступку и смешивают с буферной смесью в соотношении 2:1 (по массе), помещают в пакет из кальки.

    Каждый из рабочих образцов сравнения РОС1 - РОС4 также смешивают с буферной смесью в соотношении 2:1 (по массе).

    Верхние и нижние электроды обжигают в дуге переменного тока при силе тока 10 А в течение 10 с.

    Каждой из полученных смесей (смесь, полученная из навески пробы, и полученные из РОС1 - РОС4) плотно заполняют кратеры шести нижних электродов неоднократным погружением электродов в пакет со смесью. После этого в каждый нижний электрод помещают 2 капли спиртового раствора идитолового лака. Подсушивают электроды в сушильном шкафу при температуре 80 - 90 °С в течение (15 ± 1) мин.

    В кассету спектрографа помещают:

    в коротковолновую область спектра - диапозитивную фотопластинку;

    в длинноволновую - фотопластинку марки СП-2.

    Нижний электрод (с материалом пробы или с материалом рабочего образца сравнения) включают анодом дуги постоянного тока. Спектры фотографируют при следующих условиях:

    сила тока................................................ 10 ± 0,5 А

    межэлектродный промежуток............. 2 мм

    экспозиция............................................. (40 ± 3) с

    щель спектрографа................................ (0,020 ± 0,001) мм

    промежуточная диафрагма.................. (5,0 ± 0,1) мм

    деление шкалы длин волн.................... (303,0 ± 2,5) нм

    Фотографируют по три раза спектр каждого рабочего образца сравнения и по три раза спектр каждой пробы, используя для каждого образца сравнения (или пробы) три из шести нижних электродов. Затем фотографирование спектров повторяют, используя оставшиеся три заполненных пробой (образцом сравнения) нижних электрода.

    Экспонированные фотопластинки проявляют, промывают водой, фиксируют, окончательно промывают водой и сушат.

    4.3.1.3. Обработка результатов

    В каждой фотопластинке фотометрируют почернения аналитических линий определяемого элемента Sл+ф(табл. 7в) и близлежащего фона Sф и вычисляют разность почернений DS = Sл+ф - Sф.

    По трем значениям DS1, DS2, DS3, полученным из трех спектрограмм, снятым для каждого образца на одной фотопластинке, находят среднее арифметическое DS. От полученных значений DS переходят к значениям lg(Iл/Iф) с помощью таблиц, приведенных в ГОСТ 13637.1-77.

    Таблица 7а

    Наименование препарата

    Формула

    Температура прокаливания перед взвешиванием, °С (пред. откл. ± 20 °С)

    Масса навески прокаленного препарата оксида, г

    Коэффициент пересчета массы металла на массу оксида

    Масса металла в навеске оксида, г

    Массовая доля металла в смеси металлов, %

    Пятиокись ниобия

    Nb2O5

    950

    10,2996

    1,4305

    7,2000

    90

    Двуокись титана

    TiO2

    1100

    0,1334

    1,6680

    0,0800

    1

    Двуокись кремния

    SiO2

    1100

    0,1711

    2,1393

    0,0800

    1

    Окись железа

    Fe2O3

    800

    0,1144

    1,4297

    0,0800

    1

    Закись никеля

    NiO

    600

    0,1018

    1,2725

    0,0800

    1

    Окись алюминия

    Al2O3

    1100

    0,1512

    1,8895

    0,0800

    1

    Окись магния

    MgO

    1100

    0,1327

    1,6583

    0,0800

    1

    Окись марганца

    MnO2

    400

    0,1266

    1,5825

    0,0800

    1

    Окись олова

    SnO2

    600

    0,1016

    1,2696

    0,0800

    1

    Окись меди

    CuO

    700

    0,1001

    1,2518

    0,0800

    1

    Двуокись циркония

    ZrO2

    1100

    0,1081

    1,3508

    0,0800

    1

    11,5406

    8,0000

    100

    Используя значения lg C (где С - массовая доля определяемой примеси по табл. 7б) и полученные по первой фотопластинке значения lg(Iл/Iф) для рабочих образцов сравнения РОС1 - РОС4, строят градуировочный график в координатах lgC, lg(Iл/Iф). По этому графику, используя полученное по той же фотопластинке значение lg(Iл/Iф) для пробы, определяют массовую долю примеси в пробе - первый из двух результатов параллельных определений данной примеси.

    Таблица 7б

    Обозначение образца

    Массовая доля каждой примеси в расчете на содержание металла в смеси металлов, %

    Масса навески, г

    Суммарная масса смеси оксидов, содержащая 8 г металла, г

    прокаленного препарата пятиокиси ниобия

    разбавляемого образца (в скобках приведено его обозначение)

    Промежуточная смесь

    0,100

    10,2996

    1,1541 (ОС)

    11,4537

    РОС1

    0,020

    9,1552

    2,2907 (ПС)

    11,4459

    РОС2

    0,009

    10,4140

    1,0308 (ПС)

    11,4443

    POС4

    0,004

    10,1726

    1,2716 (РОС2)

    11,4442

    РОС3

    0,003

    11,1007

    0,3436 (ПС)

    11,4443

    Таблица 7в

    Определяемый элемент

    Аналитическая линия, нм

    Магний

    285,21

    Кремний

    288,16

    Марганец

    294,92

    Никель

    300,25

    Железо

    302,06

    Титан

    307,86

    Алюминий

    308,22

    Цирконий

    316,60

    Олово

    317,50

    Медь

    327,47

    Результат второго параллельного определения получают таким же образом по второй пластинке.

    Разность большего и меньшего результатов параллельных определений с доверительной вероятностью Р = 0,95 не должна превышать допускаемого расхождения, указанного в табл. 7г.

    Таблица 7г

    Массовая доля примеси, %

    Абсолютное допускаемое расхождение двух результатов параллельных определений, %

    0,0010

    0,0004

    0,020

    0,006

    Допускаемое расхождение для промежуточных значений массовой доли примеси, не указанных в таблице, находят методом линейного интерполирования.

    Если этот норматив удовлетворяется, вычисляют результат анализа - среднее арифметическое результатов двух параллельных определений.

    4.3.1.4. Контроль правильности результатов - по п. 4.2.4.5.

    4.3.2. Спектральный метод определения примесей вольфрама, молибдена и кобальта при массовой доле каждой примеси от 0,001 до 0,01 %

    Метод основан на возбуждении дугой постоянного тока и фотографической регистрации спектров образцов сравнения и анализируемого материала, превращенного в оксиды прокаливанием, с. последующим определением массовой доли примесей по градуировочным графикам.

    Относительное среднее квадратическое отклонение, характеризующее сходимость результатов параллельных определений каждой примеси, составляет 0,17 - при массовой доле примеси и 0,10 - при массовой доле примеси 0,005 - 0,010 %.

    4.3.2.1. Аппаратура, материалы и реактивы

    Спектрограф ДФС-13 с решеткой 600 штр/мм или аналогичный.

    Источник постоянного тока ВАС-275-100 или аналогичный.

    Микрофотометр МФ-2 или аналогичный.

    Спектропроектор ДСП-2 или аналогичный.

    Шкаф сушильный типа СНОД 3.5.3.5.3.5/3М или аналогичный.

    Весы аналитические с погрешностью взвешивания не более 0,0002 г.

    Весы торсионные ВТ-500 или аналогичные.

    Печь муфельная с терморегулятором на температуру от 400 до 1000 °С.

    Электроплитки с закрытой спиралью и покрытием, исключающим загрязнение определяемыми элементами.

    Станок для заточки графитовых электродов.

    Ступки и пестики из оргстекла.

    Чашки платиновые по ГОСТ 6563-75.

    Эксикаторы.

    Фотопластинки формата 9´12 см спектральные тип II и ЭС или аналогичные, обеспечивающие в условиях анализа нормальные почернения аналитических линий и фона в спектре.

    Нижние электроды типа «рюмка», выточенные из графитовых стержней ос. ч. 7 - 3 диаметром 6 мм, имеющие размеры, мм:

    высота «рюмки»...................... 5

    глубина кратера...................... 3

    диаметр кратера...................... 4

    диаметр шейки........................ 3,5

    высота шейки.......................... 3,5

    Верхние электроды - стержни диаметром 6 мм из графита ос. ч. 7 - 3, заточенные на цилиндр диаметром 4 мм.

    Кислота соляная по ГОСТ 14261-77, ос. ч.

    Ниобия пятиокись, ос. ч. 7 - 3, в спектре которой в условиях анализа отсутствуют аналитические линии определяемых примесей.

    Вольфрама (VI) окись, ч. д. а.

    Молибдена (IV) окись, ч. д. а.

    Кобальта (II, III) окись по ГОСТ 4467-79.

    Сурьмы (III) окись, х. ч.

    Свинец хлористый.

    Калий сернокислый, ос. ч. 6 - 4.

    Спирт этиловый ректификованный по ГОСТ 18300-87.

    Метол по ГОСТ 25664-83.

    Гидрохинон по ГОСТ 5644-75.

    Натрий сернистокислый (сульфит) по ГОСТ 195-77.

    Калий бромистый по ГОСТ 4160-74, ч. д. а.

    Натрий углекислый по ГОСТ 83-79, ч. д. а.

    Натрия тиосульфат кристаллический по ГОСТ 244-76.

    Калий сернистокислый пиро (метабисульфит).

    Вода дистиллированная по ГОСТ 6709-72.

    Посуда химическая термостойкая: стаканы вместимостью на 100, 500 и 1000 см3, воронки.

    Проявитель, готовят следующим образом: 2 г метола, 52 г сульфита натрия, 10 г гидрохинона, 40 г углекислого натрия, 5 г бромистого калия растворяют в воде в указанной последовательности, доводят объем раствора водой до 1000 см3, перемешивают и фильтруют.

    Фиксаж, готовят следующим образом: 250 г тиосульфата натрия и 25 г метабисульфита калия растворяют в указанной последовательности в 750 - 800 см3 воды, доводят объем раствора водой до 1000 см3, перемешивают и фильтруют.

    Допускается применять проявитель и фиксаж, рекомендованные для применяемых фотопластинок.

    Буферная смесь, готовят следующим образом: тщательно растирают в ступке 7,4900 г хлористого свинца, 2,5000 г сернокислого калия, 0,0100 г окиси сурьмы. Время истирания на виброистирателе 40 - 50 мин, вручную - 90 - 120 мин.

    Основная смесь, представляющая собой механическую смесь оксидов ниобия и определяемых примесей с массовой долей каждой примеси 1 % в расчете на содержание металла в смеси металлов. Для приготовления смеси каждый препарат оксидов помещают в отдельную чашку, прокаливают в течение 90 мин в муфельной печи при температурах, указанных в табл. 7д, охлаждают в эксикаторе и берут навески, указанные в табл. 7д. Переносят в ступку сначала приблизительно 1/4 часть навески пятиокиси ниобия, затем полностью навески оксидов всех примесей и тщательно растирают смесь в ступке в течение 60 мин, добавляя спирт для поддержания смеси в кашицеобразном состоянии. Затем в ту же ступку переносят оставшуюся часть навески пятиокиси ниобия и опять тщательно растирают смесь в течение 60 мин, добавляя спирт для поддержания смеси в кашицеобразном состоянии. После этого смесь сушат в сушильном шкафу, затем прокаливают при температуре (400 ± 20) °C в течение 60 мин и охлаждают в эксикаторе.

    Промежуточную смесь и рабочие образцы сравнения (РОС1 - РОС4) готовят, смешивая указанные в табл. 7е навески пятиокиси ниобия, основной смеси, промежуточной смеси и рабочего образца сравнения РОС1. Перед взятием навесок пятиокись ниобия прокаливают 90 мин при (950 ± 20) °С, а ОС, ПС и РОС1 - при температуре (400 ± 20) °С в течение 60 мин; охлаждают в эксикаторе. Смешивают тщательным растиранием в ступке в течение 90 мин, добавляя спирт для поддержания смеси в кашицеобразном состоянии. После этого смесь сушат в сушильном шкафу, прокалива

    Таблица 7д

    Наименование препарата

    Формула

    Температура прокаливания перед взвешиванием, °С

    Масса навески прокаленного препарата оксида, г

    Коэффициент пересчета массы металла на массу оксида

    Масса металла в навеске оксида, г

    Массовая доля металла в смеси металлов, %

    Пятиокись ниобия

    Nb2O5

    900 - 1000

    13,8759

    1,4305

    9,7000

    97

    Трехокись вольфрама

    WO3

    650

    0,1261

    1,2611

    0,1000

    1

    Трехокись молибдена

    MoO3

    450 - 500

    0,1500

    1,5003

    0,1000

    1

    Окись кобальта

    Со2О3

    800

    0,1407

    1,4072

    0,1000

    1

    14,2927

    10,0000

    100

    находят значения lg(Iл/Iф), пользуясь таблицами по ГОСТ 13637-77. Используя значения lg C ( где С - массовая доля вольфрама по табл. 7е) и полученные по первой фотопластинке значения lg(Iл/Iф) для рабочих образцов сравнения РОС1 - РОС4, строят градуировочный график в координатах lgC, lg(Iл/Iф). Поэтому графику, используя полученные по той же фотопластинке значения lg(Iл/Iф) для пробы, определяют массовую долю вольфрама в пробе - первый из двух результатов параллельных определений. Результат второго параллельного определения вольфрама получают таким же образом по второй фотопластинке.

    При определении молибдена и кобальта для каждого из трех спектров (пробы или образца сравнения), снятых на одной фотопластинке, находят значение DS = Sл - Scи вычисляют среднее арифметическое трех значений - значение x014.gif. По полученным значениям DS для образцов сравнения строят градуировочный график в координатах lgC, DS, где С - массовая доля определяемого элемента в образцах сравнения согласно табл. 7. По этому графику, используя полученные по той же фотопластинке значения DS для пробы, определяют массовую долю определяемого элемента в пробе - первый из двух результатов параллельных определений. Результат второго параллельного определения получают таким же образом по второй фотопластинке.

    Таблица 7е

    Обозначение образца

    Массовая доля каждой из определяемых примесей, в расчете на содержание металла в смеси металлов, %

    Масса навески, г

    Суммарная масса смеси оксидов, содержащая 10 г металлов, г

    прокаленного препарата пятиокиси ниобия

    разбавляемого образца (в скобках приведено его обозначение)

    ПС

    0,100

    12,8745

    1,4293 (ПС)

    14,3038

    РОС1

    0,010

    12,8745

    1,4301 (ПС)

    14,3049

    РОС2

    0,004

    13,7328

    0,5722 (ПС)

    14,3050

    РОС3

    0,002

    14,0189

    0,2861 (ПС)

    14,3050

    РОС4

    0,001

    12,8745

    1,4305 (РОС1)

    14,3050

    Разность большего и меньшего результатов параллельных определений элемента с доверительной вероятностью Р = 0,95 не должна превышать допускаемого расхождения, приведенного в табл. 7ж и табл. 7з.

    Если этот норматив удовлетворяется, вычисляют результат анализа - среднее арифметическое двух результатов параллельных определений.

    Таблица 7ж

    Массовая доля примеси, %

    Абсолютное допускаемое расхождение двух результатов параллельных определений, %

    0,0010

    0,0005

    0,0050

    0,0014

    0,0100

    0,0028

    Допускаемые расхождения для промежуточных значений массовой доли примеси, не указанных в таблице, находят методом линейной интерполяции.

    4.3.2.4. Контроль правильности результатов - по п. 4.2.4.5.

    4.3.3. Экстракционно-фотометрический метод определения тантала (от 0,02 до 0,10 %)

    Метод основан на измерении оптической плотности толуольного экстракта фтортанталата бриллиантового зеленого.

    4.3.3.1. Аппаратура, материалы и реактивы

    Весы аналитические.

    Таблица 7з

    Определяемый элемент

    Аналитическая линия, нм

    Интервал определяемых значений массовой доли, %

    Вольфрам

    400,87

    От 0,001 до 0,01

    Молибден

    319,40

    » 0,001 » 0,004

    320,88

    » 0,001 » 0,01

    Кобальт

    340,51

    » 0,001 » 0,004

    345,35

    » 0,001 » 0,01

    Плитка электрическая лабораторная с закрытой спиралью мощностью 3 кВт.

    Центрифуга лабораторная, марки ЦЛК-1 или аналогичная.

    Колориметр фотоэлектрический концентрационный КФК-2 или аналогичный.

    Пипетки 1-2-2; 2-2-5; 2-2-10; 2-2-20; 2-2-25; 2-2-50; 6-2-10 по ГОСТ 20292-74.

    Цилиндры 1-500; 1-2000 по ГОСТ 1770-74.

    Бюретки 6-2-5; 1-2-100 по ГОСТ 20292-74.

    Колбы 2-100-2; 2-200-2; 2-500-2 по ГОСТ 1770-741

    Стакан В-1-100 ТС по ГОСТ 25336-82.

    Стакан фторопластовый с носиком вместимостью 100 см3.

    Банка БН-0,5, по ГОСТ 17000-71.

    Бидон БДЦ-5,0 по ГОСТ 17000-71.

    Пробки из пластмассы по ГОСТ 1770-74.

    Цилиндры из полиэтилена вместимостью 60 см3.

    Пробирки центрифужные из полиэтилена вместимостью 10 см3.

    Пипетки из полиэтилена вместимостью 10 см3.

    Кислота серная по ГОСТ 4204-77, х. ч. раствор 5 моль/дм3 и 1,4 моль/дм3.

    Кислота азотная по ГОСТ 4461-77, х. ч.

    Кислота фтористоводородная по ГОСТ 10484-78, х. ч., раствор 7,5 моль/дм3.

    Раствор для отмывки экстрактов с концентрациями серной кислоты 1,18 моль/дм3 и фтористоводородной кислоты 0,98 моль/дм3. Для приготовления 5 дм3 раствора в полиэтиленовый бидон помещают 245 см3 раствора фтористоводородной кислоты 20 моль/дм3, 1175 см3 раствора серной кислоты 5 моль/дм3, 3580 см3 дистиллированной воды и перемешивают в течение 30 - 40 с.

    Бриллиантовый зеленый, ч., раствор 3 г/дм3, готовят растворением 3 г красителя в 1 дм3 воды на холоду в течение 1 ч при перемешивании с помощью электромеханической мешалки.

    Толуол по ГОСТ 5789-78, ч. д. а.

    Ацетон по ГОСТ 2603-79, ч. д. а.

    Аммоний сернокислый по ГОСТ 3769-78, х. ч.

    Порошок танталовый (высокой чистоты), с массовой долей тантала не менее 99,5 %.

    Вода дистиллированная по ГОСТ 6709-72.

    4.3.3.2. Подготовка к измерению

    4.3.3.2.1. Приготовление основного раствора и рабочих растворов

    Основной раствор пятиокиси тантала 0,200 г/дм3: навеску металлического порошка тантала 0,0819 г, взвешенную с погрешностью ± 0,0005 г, помещают во фторопластовый стакан, добавляют полиэтиленовой пипеткой 5,0 см3 концентрированной фтористоводородной кислоты, 0,5 см3 азотной кислоты, нагревают на плитке до полного растворения навески и упаривают до объема 1 - 2 см3. Раствор переводят в мерную колбу вместимостью 500 см3, в которую предварительно помещают 250 см3 дистиллированной воды, доводят до метки и перемешивают в течение 30 - 40 с. Приготовленный раствор хранят в полиэтиленовой посуде.

    Рабочие растворы пятиокиси тантала 2,0 и 20,0 мкг/см3 отбирают пипеткой 2,0 и 20,0 см3 основного раствора в мерные колбы вместимостью 200 см3, добавляют 56,0 см3 раствора серной кислоты 5 моль/дм3, доводят водой до метки и перемешивают в течение 30 - 40 с.

    4.3.3.2.2. Построение градуировочного графика

    В полиэтиленовые ампулы помещают из бюретки 2,0; 4,0; 6,0; 8,0; 10,0 см3 рабочего раствора 2,0 мкг/см3 и 1,0; 2,0; 3,0; 4,0; 5,0 см3 рабочего раствора 20,0 мкг/см3. Доводят раствором серной кислоты концентрации 1,4 моль/дм3 (2,8 н) до 10,0 см3, добавляют полиэтиленовой пипеткой 1,5 см3 раствора фтористоводородной кислоты 7,5 моль/дм3, 25,0 см3 толуола, добавляют из бюретки 11,0 см3 раствора бриллиантового зеленого и встряхивают в течение 60 с на электромеханическом встряхивателе или вручную. После расслаивания фаз в течение 60 - 90 с 10 см3 экстракта помещают в центрифужную пробирку и центрифугируют в течение 3 мин со скоростью 3000 мин-1.

    Оптическую плотность измеряют на КФК-2 в кюветах с толщиной слоя поглощения 5,0 мм в интервале 20 - 100 мкг пятиокиси тантала и 30,0 мм в интервале 4 - 20 мкг пятиокиси тантала при λmax = (590 ± 10) нм. В качестве раствора сравнения применяют толуол.

    Одновременно через все стадии проводят два параллельных контрольных опыта. Оптическая плотность контрольного опыта не должна превышать 0,03 в кювете 30 мм и 0,005 - в кювете 5 мм. По полученным данным строят два градуировочных графика.

    4.3.3.3. Проведение измерений

    Пробу массой 0,1000 г, взвешенную с погрешностью не более 0,0005 г, помещают во фторопластовый стакан, добавляют полиэтиленовой пипеткой 10 см3 концентрированной фтористоводородной кислоты, затем пипеткой 2,0 см3 азотной кислоты и 8,0 см3 концентрированной серной кислоты, нагревают на плитке до начала выделения паров серной кислоты, затем продолжают нагрев еще 2 - 3 мин. Стаканы охлаждают до температуры (25 ± 5) °С, добавляют 3,0 г сульфата аммония, разбавляют водой до 10 см3 и переводят в мерную колбу вместимостью 100 см3, доводят водой до метки и перемешивают 30 - 40 с.

    Аликвотную часть полученного раствора, содержащую 4 - 100 мкг пятиокиси тантала, помещают в полиэтиленовый цилиндр вместимостью 60 см3, доводят раствором серной кислоты концентрации 5 моль/дм3 до 10,0 см3, добавляют 1,5 см3 раствора фтористоводородной кислоты концентрации 7,5 моль/дм3 и оставляют на 8 - 10 мин. Далее добавляют пипеткой 25,0 см3 толуола, 11,0 см3 раствора бриллиантового зеленого и производят экстракцию, как описано в п. 4.3.3.2. После расслаивания фазы разделяют и экстракт в количестве 20 - 25 см3 отмывают. Добавляют 10,5 см3 раствора для отмывки (полиэтиленовой пипеткой), 10,0 см3 раствора бриллиантового зеленого из бюретки и встряхивают, как описано в п. 4.3.3.2. После расслаивания фазы разделяют и экстракт в количестве не менее 16,0 см3 вновь подвергают операции отмывки. После расслаивания фаз 10 см3 экстракта помещают в центрифужную пробирку и центрифугируют в течение 3 мин со скоростью 3000 об/мин.

    Оптическую плотность экстракта измеряют на КФК-2, как описано в п. 4.3.3.2.2. В закрытых полиэтиленовых пробирках экстракты стабильны в течение 4 ч. Допускается проведение экстракции и отмывки экстрактов одновременно в шестнадцати пробирках. Массу пятиокиси тантала определяют по градуировочному графику.

    4.3.3.4. Обработка результатов

    Массовую долю тантала (X) в процентах вычисляют по формуле

    x016.gif

    где m - масса пятиокиси тантала, найденная по градуировочному графику, мкг;

    m1- масса навески пробы, г;

    a - аликвотная часть раствора, отбираемая для экстракции, см3;

    V - объем мерной колбы, равный 100 см3;

    1,221 - коэффициент пересчета.

    За результат измерений принимают среднее арифметическое результатов двух параллельных определений.

    Допускаемые расхождения результатов двух параллельных определений не должны превышать значений допускаемых расхождений, приведенных в табл. 7и.

    4.3.3.5. Контроль правильности анализа

    Контроль правильности анализа проводят методом добавок.

    Суммарная массовая доля тантала в пробе с добавкой должна быть не меньше утроенного значения нижней границы определяемых массовых долей и не больше верхней границы определяемых массовых долей.

    Таблица 7и

    Массовая доля тантала, %

    Допускаемые расхождения, %

    0,02

    0,01

    0,05

    0,01

    0,10

    0,02

    Суммарное содержание тантала 1) в пробе с добавкой в процентах вычисляют по формуле

    x018.gif

    где Хан - массовая доля тантала в пробе, %;

    m1- масса тантала, введенная с добавкой, мкг;

    m2- масса навески пробы, г.

    Анализ считают правильным (Р = 0,95), если разность большей и меньшей из двух величин Х1и результата анализа пробы с добавкой не превышает

    x020.gif

    где d1- допускаемое расхождение между результатами двух параллельных определений в пробе без добавки;

    d2- допускаемое расхождение между результатами двух параллельных определений в пробе с добавкой.

    4.3.1 - 4.3.3.5. (Введены дополнительно, Изм. № 1).

    Источник: ГОСТ 26252-84: Порошок ниобиевый. Технические условия оригинал документа

    Англо-русский словарь нормативно-технической терминологии > NiO

  • 5 MgO

    1. Спектральный метод определения никеля, алюминия, магния, марганца, кобальта, олова, меди и циркония в ниобии

    4.2. Спектральный метод определения никеля, алюминия, магния, марганца, кобальта, олова, меди и циркония в ниобии

    Спектральному методу предшествует перевод анализируемой пробы в пятиокись ниобия.

    Метод основан на измерении интенсивности линий элементов примесей в спектре, полученном при испарении пятиокиси ниобия в смеси с графитовым порошком и хлористым натрием из канала графитового электрода в дуге постоянного тока.

    Массовую долю примесей в ниобии (табл. 4) определяют по градуировочным графикам, построенным в координатах: логарифм отношения интенсивности линии определяемого элемента и интенсивности фона (x004.gif) - логарифм концентрации определяемого элемента (lg C).

    4.2.1. Аппаратура, материалы и реактивы

    Спектрограф дифракционный типа ДФС-13 с решеткой 600 и 1200 штр/мм и трехлинзовой системой освещения щели или аналогичный прибор (фотоэлектрический прибор типа МФС). Допускается использовать спектрограф ДФС-8 с решеткой 1800 штрихов.

    Генератор дуговой типа ДГ-2 с дополнительным реостатом или генератор аналогичного типа.

    Выпрямитель 250 - 300 В, 30 - 50 А.

    Микрофотометр нерегистрирующий типа МФ-2 или аналогичного типа.

    Таблица 4

    Определяемая примесь

    Массовая доля примеси, %

    Никель

    1∙10-3 - 2∙10-2

    Алюминий

    5∙10-4 - 1∙10-2

    Магний

    1∙10-3 - 2∙10-3

    Марганец

    5∙10-4 - 5∙10-3

    Кобальт

    5∙10-4 - 3∙10-2

    Олово

    1∙10-3 - 1∙10-2

    Медь

    3∙10-3 - 5∙10-2

    Цирконий

    1∙10-3 - 2∙10-2

    Спектропроектор типа ПС-18, СП-2 или аналогичного типа.

    Весы аналитические.

    Весы торсионные типа ВТ-500.

    Ступка и пестик из органического стекла.

    Бокс из органического стекла.

    Электропечь муфельная с терморегулятором на температуру до 900 °С.

    Чашки платиновые.

    Станок для заточки графитовых электродов.

    Электроды графитовые, выточенные из графитовых стержней ОС. Ч. 7 - 3 диаметром 6 мм, заточенные на усеченный конус с площадкой диаметром 1,5 мм.

    Электроды графитовые, выточенные из графитовых стержней ОС. Ч. 7 - 3 диаметром 6 мм, с каналом глубиной 5 мм, внешний диаметр - 3,0 мм, внутренний диаметр - 2,0 мм, длина заточенной части - 6 мм.

    Порошок графитовый ОС. Ч. 8 - 4 по ГОСТ 23463-79.

    Фотопластинки спектрографические марок СПЭС и СП-2, размером 9´12/1,2 или 13´18/1,2, обеспечивающие нормальное почернение аналитических линий и близлежащего фона в спектре.

    Лампа инфракрасная ИКЗ-500 с регулятором напряжения РНО-250-0,5 или аналогичным.

    Спирт этиловый ректификованный по ГОСТ 18300-72, дважды перегнанный в кварцевом приборе.

    Никеля окись черная по ГОСТ 4331-78, ч.

    Алюминия окись безводная для спектрального анализа, х. ч.

    Магния окись по ГОСТ 4526-75, ч. д. а.

    Марганца (IV) окись по ГОСТ 4470-79, ч. д. а.

    Кобальта (II - III) окись по ГОСТ 4467-79, ч. или ч. д. а.

    Олова двуокись, ч. д. а.

    Циркония двуокись по ГОСТ 21907-76.

    Меди (II) окись по ГОСТ 16539-79.

    Натрий хлористый ОС. Ч. 6 - 1.

    Ниобия пятиокись, в которой содержание определяемых элементов не превышает установленной для метода нижней границы диапазона определяемых массовых долей.

    Проявитель:

    метол........................................................................................ 2,2 г

    натрий сернистокислый безводный по ГОСТ 195-77......... 96 г

    гидрохинон по ГОСТ 19627-74............................................. 8,8 г

    натрий углекислый по ГОСТ 83-79...................................... 48 г

    калий бромистый по ГОСТ 4160-74..................................... 5 г

    вода........................................................................................... до 1000 см3.

    Фиксаж:

    тиосульфат натрия кристаллический по СТ СЭВ 223-75... 300 г

    аммоний хлористый по ГОСТ 3773-72................................ 20 г

    вода........................................................................................... до 1000 см3.

    4.2.2. Приготовление буферной смеси

    Буферную смесь, состоящую из 90 % угольного порошка и 10 % хлористого натрия готовят, смешивая 0,9000 г угольного порошка и 0,1000 г хлористого натрия с 20 см3 спирта в течение 30 мин и высушивая под инфракрасной лампой.

    4.2.3. Приготовление образцов сравнения (ОС)

    Основной образец сравнения, содержащий по 1 % никеля, алюминия, магния, марганца, кобальта, олова, циркония и меди, готовят механическим истиранием и перемешиванием буферной смеси с окислами соответствующих металлов.

    Навески массой 0,0141 г окиси никеля, 0,0189 г окиси алюминия, 0,0186 г окиси магния, 0,0158 г окиси марганца (IV) 0,0136 г (II - III)-окиси кобальта, 0,0127 г двуокиси олова, 0,0125 г окиси меди и 0,0140 г двуокиси циркония помещают в ступке из органического стекла и добавляют 0,8818 г буферной смеси. Смесь тщательно перемешивают, добавляя спирт для поддержания смеси в кашицеобразном состоянии, в течение 1 ч и высушивают под инфракрасной лампой до постоянной массы.

    Последовательным разбавлением основного образца сравнения буферной смесью готовят серию образцов сравнения (ОС) с убывающей концентрацией определяемых элементов. Содержание каждой из определяемых примесей (в процентах на содержание металла в металлическом ниобии) и вводимые в смесь навески буферной смеси и разбавляемого образца приведены в табл. 5.

    Образцы сравнения хранят в полиэтиленовых банках с крышками.

    Таблица 5

    Обозначение образца

    Массовая доля каждой из определяемых примесей, %

    Масса навески, г

    буферной смеси

    разбавляемого образца

    ОС 1

    1∙10-1

    3,3930

    0,3770 (основной образец)

    ОС 2

    5∙10-2

    1,7700

    1,7700 (ОС 1)

    ОС 3

    2∙10-2

    2,3100

    1,5400 (ОС 2)

    ОС 4

    1∙10-2

    1,8500

    1,8500 (ОС 3)

    ОС 5

    5∙10-3

    1,7000

    1,7000 (ОС 4)

    ОС 6

    2∙10-3

    2,1000

    1,4000 (ОС 5)

    ОС 7

    1∙10-3

    1,5000

    1,5000 (ОС 6)

    ОС 8

    5∙10-4

    1,0000

    1,0000 (ОС 7)

    4.1.2 - 4.2.3. (Измененная редакция, Изм. № 1).

    4.2.4. Проведение анализа

    4.2.4.1. Перевод металлического ниобия в пятиокись ниобия

    Пробу металлического ниобия 1 - 3 г помещают в платиновую чашку и прокаливают в муфельной печи при температуре 800 - 900 °С в течение 2 ч. Полученную пятиокись ниобия в виде белого порошка охлаждают в эксикаторе, помещают в пакет из кальки к передают на спектральный анализ.

    4.2.4.2. Определение никеля, алюминия, магния, марганца, кобальта, олова, меди и циркония

    Пробы и образцы сравнения готовят в боксе. Для этого 100 мг пробы и 100 мг буферной смеси или 100 мг образца сравнения и 100 мг пятиокиси ниобия тщательно растирают в плексигласовой ступке в течение 5 мин. Подготовленную пробу или образец сравнения набивают в каналы трех графитовых электродов, предварительно обожженных в дуге постоянного тока при 7 А в течение 5 с.

    Электроды устанавливают в штатив в вертикальном положении. Верхним электродом служит графитовый стержень, заточенный на конус. Между электродами зажигают дугу постоянного тока силой 7 А с последующим повышением (в течение 20 с) до 15 А. Электрод с пробой включен анодом.

    Во избежание выброса материала из кратера электродов, ток включают при сомкнутых электродах с их последующим разведением, величина которого контролируется по проекции на промежуточной диафрагме. Время экспозиции - 120 с, промежуточная диафрагма - 5 мм.

    Спектры в области длин волн 2500 - 3500 нм фотографируют с помощью спектрографа ДФС-13 с решеткой 600 штр/мм, используя трехлинзовую систему освещения щели на фотопластинку тип II чув. 15 ед., ширина щели спектрографа 15 мкм.

    4.2.4.3. Определение меди

    Пробу, приготовленную по п. 4.2.4.2, помещают в канал графитового электрода. Электрод с пробой или образцом сравнения служит анодом (нижний электрод). Верхним электродом является графитовый электрод, заточенный на конус. Между электродами зажигают дугу постоянного тока. В первые 15 с сила тока - 5 А, последующие 1 мин 45 с - 15 А. Полная экспозиция 120 с. Спектры фотографируют на спектрографе ДФС-13 с решеткой 1200 штр/мм с трехлинзовой осветительной системой. Фотопластинка типа ЭС чув. 9. Промежуточная диафрагма 0,8 мм. Шкалу длин волн устанавливают на 320 нм. Ширина щели спектрографа 15 мкм. Во время экспозиции расстояние между электродами поддерживают равным 3 мм.

    Спектр каждой пробы и каждого образца сравнения регистрируют на фотопластинке по три раза. Экспонированные пластинки проявляют, промывают водой, фиксируют, окончательно промывают и сушат.

    4.2.4.1 - 4.2.4.3. (Измененная редакция, Изм. № 1).

    4.2.4.4. Обработка результатов

    В каждой спектрограмме фотометрируют почернения аналитической линии определяемого элемента Sл+ф (табл. 6) и близлежащего фона Sф и вычисляют разность почернений DS = Sл+a - Sф.

    Таблица 6

    Определяемый элемент

    Длина волны аналитической линии, нм

    Алюминий

    309,2

    Магний

    279,5

    Марганец

    279,4

    Медь

    327,4

    Олово

    284,0

    Цирконий

    339,2

    Никель

    300,2

    Кобальт

    304,4

    По трем параллельным значениям DS1, DS2, DS3, полученным по трем спектрограммам, снятым для каждого образца, находят среднее арифметическое результатов x006.gif.

    От полученных средних значений x008.gif переходят к значениям x009.gif с помощью таблиц, приведенных в приложении к ГОСТ 13637.1-77.

    Используя значения lg C и x010.gif для образцов сравнения, строят градуировочный график в координатах x011.gif, lg C. По этому графику по значениям x012.gif для пробы определяют содержание примеси в пробе.

    Разность наибольших и наименьших из результатов трех параллельных и результатов двух анализов с доверительной вероятностью Р = 0,95 не должна превышать величин допускаемых расхождений, приведенных в табл. 7.

    Таблица 7

    Определяемый элемент

    Массовая доля, %

    Допускаемое расхождение, %

    параллельных определений

    результатов анализов

    Алюминий

    0,0005

    0,005

    0,01

    0,0003

    0,003

    0,006

    0,0002

    0,002

    0,004

    Цирконий

    0,001

    0,005

    0,01

    0,0006

    0,003

    0,005

    0,0004

    0,002

    0,003

    Магний

    0,001

    0,005

    0,01

    0,0006

    0,004

    0,006

    0,0001

    0,003

    0,004

    Марганец

    0,0005

    0,005

    0,01

    0,0003

    0,003

    0,006

    0,0002

    0,002

    0,004

    Медь

    0,005

    0,01

    0,06

    0,003

    0,003

    0,006

    0,02

    0,002

    0,002

    0,003

    0,01

    0,002

    Олово

    0,001

    0,005

    0,01

    0,0006

    0,003

    0,005

    0,0004

    0,002

    0,003

    Никель

    0,001

    0,005

    0,001

    0,0006

    0,003

    0,005

    0,0004

    0,002

    0,003

    Кобальт

    0,0005

    0,005

    0,01

    0,0003

    0,003

    0,005

    0,0002

    0,002

    0,003

    Допускаемые расхождения для промежуточных содержаний рассчитывают методом линейной интерполяции.

    4.2.4.5. Контроль правильности результатов

    Правильность результатов анализа серии проб контролируют для каждой определенной примеси при переходе к новому комплекту образцов сравнения, С этой целью для одной и той же пробы, содержащей определенную примесь в контролируемом диапазоне концентраций с использованием старого и нового комплектов образцов сравнения, получают четыре результата анализа и вычисляют средние арифметические значения. Затем находят разность большего и меньшего значений. Результаты анализа считают правильными, если указанная разность не превышает допускаемых расхождений результатов двух анализов пробы по содержанию определяемой примеси.

    Контроль правильности проводят для каждого интервала между ближайшими по содержанию образцами сравнения по мере поступления на анализ соответствующих проб.

    4.3. Массовую долю тантала, титана, кремния, железа, вольфрама, молибдена определяют по ГОСТ 18385.1-79 - ГОСТ 18385.4-79 или спектральными методами (пп. 4.3.1 - 4.3.3), кислорода и водорода - по ГОСТ 22720.1-77, азота - по ГОСТ 22720.1-77 или ГОСТ 22720.4-77.

    Допускается применять другие методы анализа примесей, по точности не уступающие указанным.

    При разногласиях в оценке химического состава его определяют по ГОСТ 18385.1-79 - ГОСТ 18385.4-79, ГОСТ 22720.1-77, ГОСТ 22720.1-77 и ГОСТ 22720.4-77.

    Массовую долю углерода определяют по ГОСТ 22720.3-77. Кроме анализатора АН-160, допускается использовать приборы АН-7529 и АН-7560.

    4.2.4.4. - 4.3. (Измененная редакция, Изм. № 1).

    4.3.1. Спектральный метод определения примесей титана, кремния, железа, никеля, алюминия, магния, марганца, олова, меди, циркония, при массовой доле каждой примеси от 0,001 до 0,02.

    Метод основан на возбуждении дугой постоянного тока и фотографической регистрации спектров образцов сравнения и спектров анализируемого материала, превращенного в оксиды прокаливанием, с последующим определением массовой доли примесей по градуировочным графикам, построенным в координатах: логарифм отношения интенсивности линии определяемого элемента к интенсивности фона lg(Iл/Iф) - логарифм массовой доли определяемого элемента lg C.

    Относительное среднее квадратическое отклонение, характеризующее сходимость результатов параллельных определений, при массовой доле каждой примеси 0,001 % составляет 0,15, при массовой доле каждой примеси 0,02 % - 0,11.

    Суммарная погрешность результата анализа с доверительной вероятностью Р = 0,95 при массовой доле примеси 0,00100 % не должна превышать ± 0,00023 % абс, при массовой доле примеси 0,0200 % - ± 0,0033 % абс.

    4.3.1.1. Аппаратура, материалы и реактивы

    Спектрограф ДФС-13 с решеткой 1200 штр/мм или аналогичный.

    Источник постоянного тока УГЭ, или ВАС-275-100, или аналогичный.

    Микроденситометр МД-100, или микрофотометр МФ-2, или аналогичный.

    Спектропроектор типа ПС-18, или ДСП-2, или аналогичный.

    Весы аналитические с погрешностью взвешивания не более 0,0002 г.

    Весы торсионные ВТ-500 или аналогичные с погрешностью взвешивания не более 0,002 г.

    Печь муфельная с терморегулятором, на температуру от 400 до 1100 °С.

    Шкаф сушильный типа СНОД 3.5.3.5.3.5./3М или аналогичный.

    Станок для заточки графитовых электродов.

    Ступки и пестики из оргстекла.

    Чашки платиновые по ГОСТ 6563-75.

    Фотопластинки спектральные: диапозитивные, СП-2, СП-ЭС, обеспечивающие в условиях анализа нормальные почернения аналитических линий и близлежащего фона в спектре.

    Порошок графитовый ос. ч. 8 - 4 по ГОСТ 23463-79 или аналогичный, обеспечивающий чистоту по определяемым примесям. Нижние электроды, выточенные из графитовых стержней ос. ч. 7 - 3 диаметром 6 мм, имеющие размеры, мм:

    высота заточенной части....................... 10

    диаметр заточенной части.................... 4,0

    глубина кратера...................................... 3,8

    диаметр кратера..................................... 2,5

    Верхние электроды из графитовых стержней ос. ч. 7 - 3 диаметром 6 мм, заточенные на усеченный конус с площадкой диаметром 1,5 мм, высотой заточенной конической части 4 мм.

    Натрий фтористый, ос. ч. 7 - 3.

    Ниобия пятиокись для оптического стекловарения, ос. ч. 7 - 3.

    Титана (IV) двуокись, ос. ч. 7 - 3.

    Кремния (IV) двуокись по ГОСТ 9428-73, ч. д. а.

    Железа (III) окись, ос. ч. 2 - 4.

    Никеля (II) закись, ч. д. а.

    Алюминия (III) окись, х. ч.

    Магния (II), ч. д. а.

    Марганца (IV) окись, ос. ч. 9 - 2.

    Олова (IV) окись, ч. д. а.

    Меди (II) окись (гранулированная) по ГОСТ 16539-79.

    Циркония (IV) двуокись, ос. ч. 6 - 2.

    Спирт этиловый ректификованный по ГОСТ 18300-87.

    Лак идитоловый, 1 %-ный спиртовый раствор.

    Метол по ГОСТ 25664-83.

    Гидрохинон по ГОСТ 19627-74.

    Натрий сернистокислый (сульфит) по ГОСТ 195-77.

    Натрий углекислый по ГОСТ 83-79.

    Калий бромистый по ГОСТ 4160-74.

    Натрия тиосульфат кристаллический по ГОСТ 244-76.

    Калий сернистокислый пиро (метабисульфит).

    Вода дистиллированная по ГОСТ 6709-72.

    Проявитель, готовят следующим образом: 2 г метола, 52 г сульфита натрия, 10 г гидрохинона, 40 г углекислого натрия, 5 г бромистого калия растворяют в воде, в указанной последовательности доводят объем раствора водой до 1000 см3, перемешивают и фильтруют.

    Фиксаж, готовят следующим образом: 250 г тиосульфата натрия и 25 г метабисульфита калия растворяют в указанной последовательности в 750 - 800 см3 воды, доводят объем раствора водой до 1000 см3, перемешивают и фильтруют.

    Допускается применять проявитель и фиксаж, рекомендованные для применяемых фотопластинок.

    Основная смесь, представляющая собой механическую смесь оксида ниобия и оксидов определяемых элементов с массовой долей каждой примеси 1 % в расчете на содержание металла в смеси металлов. Для ее приготовления каждый препарат оксида помещают в отдельную чашку, прокаливают в течение 90 мин в муфельной печи при температурах, указанных в табл. 7, охлаждают в эксикаторе и берут навески, указанные в табл. 7а. Переносят в ступку сначала приблизительно одну четвертую часть навески пятиокиси ниобия, затем полностью навески оксидов всех элементов-примесей и тщательно растирают смесь в ступке в течение 60 мин, добавляя спирт для поддержания смеси в кашицеобразном состоянии. Затем в ту же ступку переносят оставшуюся часть навески пятиокиси ниобия и опять тщательно растирают смесь в течение 60 мин, добавляя спирт для поддержания смеси в кашицеобразном состоянии. После этого смесь сушат в сушильном шкафу, а затем прокаливают при температуре (400 ± 20) °С в течение 60 мин и охлаждают в эксикаторе.

    Промежуточная смесь и рабочие образцы сравнения (РОС1 - РОС4); готовят, смешивая указанные в табл. 7б массы пятиокиси ниобия, основной смеси, промежуточной смеси и рабочего образца сравнения РОС2. Перед взятием навесок пятиокись ниобия прокаливают 90 мин при (950 ± 20) °С, а ОС, ПС и РОС2 - при температуре (400 ± 20) °С в течение 60 мин и охлаждают в эксикаторе. Смешивают тщательным растиранием в ступке в течение 60 мин, добавляя спирт для поддержания смеси в кашицеобразном состоянии. После этого смесь сушат в сушильном шкафу, прокаливают при температуре (400 ± 20) °С в течение 60 мин и охлаждают в эксикаторе.

    Буферная смесь 95 % графитового порошка и 5 % фтористого натрия. Навески помещают в ступку и тщательно растирают в течение 30 мин.

    4.3.1.2. Проведение анализа

    Навеску порошка металлического ниобия массой 0,5 г помещают в платиновую чашку, прокаливают в муфельной печи при температуре 800 - 850 °С в течение 2 ч и охлаждают в эксикаторе. Переносят в ступку и смешивают с буферной смесью в соотношении 2:1 (по массе), помещают в пакет из кальки.

    Каждый из рабочих образцов сравнения РОС1 - РОС4 также смешивают с буферной смесью в соотношении 2:1 (по массе).

    Верхние и нижние электроды обжигают в дуге переменного тока при силе тока 10 А в течение 10 с.

    Каждой из полученных смесей (смесь, полученная из навески пробы, и полученные из РОС1 - РОС4) плотно заполняют кратеры шести нижних электродов неоднократным погружением электродов в пакет со смесью. После этого в каждый нижний электрод помещают 2 капли спиртового раствора идитолового лака. Подсушивают электроды в сушильном шкафу при температуре 80 - 90 °С в течение (15 ± 1) мин.

    В кассету спектрографа помещают:

    в коротковолновую область спектра - диапозитивную фотопластинку;

    в длинноволновую - фотопластинку марки СП-2.

    Нижний электрод (с материалом пробы или с материалом рабочего образца сравнения) включают анодом дуги постоянного тока. Спектры фотографируют при следующих условиях:

    сила тока................................................ 10 ± 0,5 А

    межэлектродный промежуток............. 2 мм

    экспозиция............................................. (40 ± 3) с

    щель спектрографа................................ (0,020 ± 0,001) мм

    промежуточная диафрагма.................. (5,0 ± 0,1) мм

    деление шкалы длин волн.................... (303,0 ± 2,5) нм

    Фотографируют по три раза спектр каждого рабочего образца сравнения и по три раза спектр каждой пробы, используя для каждого образца сравнения (или пробы) три из шести нижних электродов. Затем фотографирование спектров повторяют, используя оставшиеся три заполненных пробой (образцом сравнения) нижних электрода.

    Экспонированные фотопластинки проявляют, промывают водой, фиксируют, окончательно промывают водой и сушат.

    4.3.1.3. Обработка результатов

    В каждой фотопластинке фотометрируют почернения аналитических линий определяемого элемента Sл+ф(табл. 7в) и близлежащего фона Sф и вычисляют разность почернений DS = Sл+ф - Sф.

    По трем значениям DS1, DS2, DS3, полученным из трех спектрограмм, снятым для каждого образца на одной фотопластинке, находят среднее арифметическое DS. От полученных значений DS переходят к значениям lg(Iл/Iф) с помощью таблиц, приведенных в ГОСТ 13637.1-77.

    Таблица 7а

    Наименование препарата

    Формула

    Температура прокаливания перед взвешиванием, °С (пред. откл. ± 20 °С)

    Масса навески прокаленного препарата оксида, г

    Коэффициент пересчета массы металла на массу оксида

    Масса металла в навеске оксида, г

    Массовая доля металла в смеси металлов, %

    Пятиокись ниобия

    Nb2O5

    950

    10,2996

    1,4305

    7,2000

    90

    Двуокись титана

    TiO2

    1100

    0,1334

    1,6680

    0,0800

    1

    Двуокись кремния

    SiO2

    1100

    0,1711

    2,1393

    0,0800

    1

    Окись железа

    Fe2O3

    800

    0,1144

    1,4297

    0,0800

    1

    Закись никеля

    NiO

    600

    0,1018

    1,2725

    0,0800

    1

    Окись алюминия

    Al2O3

    1100

    0,1512

    1,8895

    0,0800

    1

    Окись магния

    MgO

    1100

    0,1327

    1,6583

    0,0800

    1

    Окись марганца

    MnO2

    400

    0,1266

    1,5825

    0,0800

    1

    Окись олова

    SnO2

    600

    0,1016

    1,2696

    0,0800

    1

    Окись меди

    CuO

    700

    0,1001

    1,2518

    0,0800

    1

    Двуокись циркония

    ZrO2

    1100

    0,1081

    1,3508

    0,0800

    1

    11,5406

    8,0000

    100

    Используя значения lg C (где С - массовая доля определяемой примеси по табл. 7б) и полученные по первой фотопластинке значения lg(Iл/Iф) для рабочих образцов сравнения РОС1 - РОС4, строят градуировочный график в координатах lgC, lg(Iл/Iф). По этому графику, используя полученное по той же фотопластинке значение lg(Iл/Iф) для пробы, определяют массовую долю примеси в пробе - первый из двух результатов параллельных определений данной примеси.

    Таблица 7б

    Обозначение образца

    Массовая доля каждой примеси в расчете на содержание металла в смеси металлов, %

    Масса навески, г

    Суммарная масса смеси оксидов, содержащая 8 г металла, г

    прокаленного препарата пятиокиси ниобия

    разбавляемого образца (в скобках приведено его обозначение)

    Промежуточная смесь

    0,100

    10,2996

    1,1541 (ОС)

    11,4537

    РОС1

    0,020

    9,1552

    2,2907 (ПС)

    11,4459

    РОС2

    0,009

    10,4140

    1,0308 (ПС)

    11,4443

    POС4

    0,004

    10,1726

    1,2716 (РОС2)

    11,4442

    РОС3

    0,003

    11,1007

    0,3436 (ПС)

    11,4443

    Таблица 7в

    Определяемый элемент

    Аналитическая линия, нм

    Магний

    285,21

    Кремний

    288,16

    Марганец

    294,92

    Никель

    300,25

    Железо

    302,06

    Титан

    307,86

    Алюминий

    308,22

    Цирконий

    316,60

    Олово

    317,50

    Медь

    327,47

    Результат второго параллельного определения получают таким же образом по второй пластинке.

    Разность большего и меньшего результатов параллельных определений с доверительной вероятностью Р = 0,95 не должна превышать допускаемого расхождения, указанного в табл. 7г.

    Таблица 7г

    Массовая доля примеси, %

    Абсолютное допускаемое расхождение двух результатов параллельных определений, %

    0,0010

    0,0004

    0,020

    0,006

    Допускаемое расхождение для промежуточных значений массовой доли примеси, не указанных в таблице, находят методом линейного интерполирования.

    Если этот норматив удовлетворяется, вычисляют результат анализа - среднее арифметическое результатов двух параллельных определений.

    4.3.1.4. Контроль правильности результатов - по п. 4.2.4.5.

    4.3.2. Спектральный метод определения примесей вольфрама, молибдена и кобальта при массовой доле каждой примеси от 0,001 до 0,01 %

    Метод основан на возбуждении дугой постоянного тока и фотографической регистрации спектров образцов сравнения и анализируемого материала, превращенного в оксиды прокаливанием, с. последующим определением массовой доли примесей по градуировочным графикам.

    Относительное среднее квадратическое отклонение, характеризующее сходимость результатов параллельных определений каждой примеси, составляет 0,17 - при массовой доле примеси и 0,10 - при массовой доле примеси 0,005 - 0,010 %.

    4.3.2.1. Аппаратура, материалы и реактивы

    Спектрограф ДФС-13 с решеткой 600 штр/мм или аналогичный.

    Источник постоянного тока ВАС-275-100 или аналогичный.

    Микрофотометр МФ-2 или аналогичный.

    Спектропроектор ДСП-2 или аналогичный.

    Шкаф сушильный типа СНОД 3.5.3.5.3.5/3М или аналогичный.

    Весы аналитические с погрешностью взвешивания не более 0,0002 г.

    Весы торсионные ВТ-500 или аналогичные.

    Печь муфельная с терморегулятором на температуру от 400 до 1000 °С.

    Электроплитки с закрытой спиралью и покрытием, исключающим загрязнение определяемыми элементами.

    Станок для заточки графитовых электродов.

    Ступки и пестики из оргстекла.

    Чашки платиновые по ГОСТ 6563-75.

    Эксикаторы.

    Фотопластинки формата 9´12 см спектральные тип II и ЭС или аналогичные, обеспечивающие в условиях анализа нормальные почернения аналитических линий и фона в спектре.

    Нижние электроды типа «рюмка», выточенные из графитовых стержней ос. ч. 7 - 3 диаметром 6 мм, имеющие размеры, мм:

    высота «рюмки»...................... 5

    глубина кратера...................... 3

    диаметр кратера...................... 4

    диаметр шейки........................ 3,5

    высота шейки.......................... 3,5

    Верхние электроды - стержни диаметром 6 мм из графита ос. ч. 7 - 3, заточенные на цилиндр диаметром 4 мм.

    Кислота соляная по ГОСТ 14261-77, ос. ч.

    Ниобия пятиокись, ос. ч. 7 - 3, в спектре которой в условиях анализа отсутствуют аналитические линии определяемых примесей.

    Вольфрама (VI) окись, ч. д. а.

    Молибдена (IV) окись, ч. д. а.

    Кобальта (II, III) окись по ГОСТ 4467-79.

    Сурьмы (III) окись, х. ч.

    Свинец хлористый.

    Калий сернокислый, ос. ч. 6 - 4.

    Спирт этиловый ректификованный по ГОСТ 18300-87.

    Метол по ГОСТ 25664-83.

    Гидрохинон по ГОСТ 5644-75.

    Натрий сернистокислый (сульфит) по ГОСТ 195-77.

    Калий бромистый по ГОСТ 4160-74, ч. д. а.

    Натрий углекислый по ГОСТ 83-79, ч. д. а.

    Натрия тиосульфат кристаллический по ГОСТ 244-76.

    Калий сернистокислый пиро (метабисульфит).

    Вода дистиллированная по ГОСТ 6709-72.

    Посуда химическая термостойкая: стаканы вместимостью на 100, 500 и 1000 см3, воронки.

    Проявитель, готовят следующим образом: 2 г метола, 52 г сульфита натрия, 10 г гидрохинона, 40 г углекислого натрия, 5 г бромистого калия растворяют в воде в указанной последовательности, доводят объем раствора водой до 1000 см3, перемешивают и фильтруют.

    Фиксаж, готовят следующим образом: 250 г тиосульфата натрия и 25 г метабисульфита калия растворяют в указанной последовательности в 750 - 800 см3 воды, доводят объем раствора водой до 1000 см3, перемешивают и фильтруют.

    Допускается применять проявитель и фиксаж, рекомендованные для применяемых фотопластинок.

    Буферная смесь, готовят следующим образом: тщательно растирают в ступке 7,4900 г хлористого свинца, 2,5000 г сернокислого калия, 0,0100 г окиси сурьмы. Время истирания на виброистирателе 40 - 50 мин, вручную - 90 - 120 мин.

    Основная смесь, представляющая собой механическую смесь оксидов ниобия и определяемых примесей с массовой долей каждой примеси 1 % в расчете на содержание металла в смеси металлов. Для приготовления смеси каждый препарат оксидов помещают в отдельную чашку, прокаливают в течение 90 мин в муфельной печи при температурах, указанных в табл. 7д, охлаждают в эксикаторе и берут навески, указанные в табл. 7д. Переносят в ступку сначала приблизительно 1/4 часть навески пятиокиси ниобия, затем полностью навески оксидов всех примесей и тщательно растирают смесь в ступке в течение 60 мин, добавляя спирт для поддержания смеси в кашицеобразном состоянии. Затем в ту же ступку переносят оставшуюся часть навески пятиокиси ниобия и опять тщательно растирают смесь в течение 60 мин, добавляя спирт для поддержания смеси в кашицеобразном состоянии. После этого смесь сушат в сушильном шкафу, затем прокаливают при температуре (400 ± 20) °C в течение 60 мин и охлаждают в эксикаторе.

    Промежуточную смесь и рабочие образцы сравнения (РОС1 - РОС4) готовят, смешивая указанные в табл. 7е навески пятиокиси ниобия, основной смеси, промежуточной смеси и рабочего образца сравнения РОС1. Перед взятием навесок пятиокись ниобия прокаливают 90 мин при (950 ± 20) °С, а ОС, ПС и РОС1 - при температуре (400 ± 20) °С в течение 60 мин; охлаждают в эксикаторе. Смешивают тщательным растиранием в ступке в течение 90 мин, добавляя спирт для поддержания смеси в кашицеобразном состоянии. После этого смесь сушат в сушильном шкафу, прокалива

    Таблица 7д

    Наименование препарата

    Формула

    Температура прокаливания перед взвешиванием, °С

    Масса навески прокаленного препарата оксида, г

    Коэффициент пересчета массы металла на массу оксида

    Масса металла в навеске оксида, г

    Массовая доля металла в смеси металлов, %

    Пятиокись ниобия

    Nb2O5

    900 - 1000

    13,8759

    1,4305

    9,7000

    97

    Трехокись вольфрама

    WO3

    650

    0,1261

    1,2611

    0,1000

    1

    Трехокись молибдена

    MoO3

    450 - 500

    0,1500

    1,5003

    0,1000

    1

    Окись кобальта

    Со2О3

    800

    0,1407

    1,4072

    0,1000

    1

    14,2927

    10,0000

    100

    находят значения lg(Iл/Iф), пользуясь таблицами по ГОСТ 13637-77. Используя значения lg C ( где С - массовая доля вольфрама по табл. 7е) и полученные по первой фотопластинке значения lg(Iл/Iф) для рабочих образцов сравнения РОС1 - РОС4, строят градуировочный график в координатах lgC, lg(Iл/Iф). Поэтому графику, используя полученные по той же фотопластинке значения lg(Iл/Iф) для пробы, определяют массовую долю вольфрама в пробе - первый из двух результатов параллельных определений. Результат второго параллельного определения вольфрама получают таким же образом по второй фотопластинке.

    При определении молибдена и кобальта для каждого из трех спектров (пробы или образца сравнения), снятых на одной фотопластинке, находят значение DS = Sл - Scи вычисляют среднее арифметическое трех значений - значение x014.gif. По полученным значениям DS для образцов сравнения строят градуировочный график в координатах lgC, DS, где С - массовая доля определяемого элемента в образцах сравнения согласно табл. 7. По этому графику, используя полученные по той же фотопластинке значения DS для пробы, определяют массовую долю определяемого элемента в пробе - первый из двух результатов параллельных определений. Результат второго параллельного определения получают таким же образом по второй фотопластинке.

    Таблица 7е

    Обозначение образца

    Массовая доля каждой из определяемых примесей, в расчете на содержание металла в смеси металлов, %

    Масса навески, г

    Суммарная масса смеси оксидов, содержащая 10 г металлов, г

    прокаленного препарата пятиокиси ниобия

    разбавляемого образца (в скобках приведено его обозначение)

    ПС

    0,100

    12,8745

    1,4293 (ПС)

    14,3038

    РОС1

    0,010

    12,8745

    1,4301 (ПС)

    14,3049

    РОС2

    0,004

    13,7328

    0,5722 (ПС)

    14,3050

    РОС3

    0,002

    14,0189

    0,2861 (ПС)

    14,3050

    РОС4

    0,001

    12,8745

    1,4305 (РОС1)

    14,3050

    Разность большего и меньшего результатов параллельных определений элемента с доверительной вероятностью Р = 0,95 не должна превышать допускаемого расхождения, приведенного в табл. 7ж и табл. 7з.

    Если этот норматив удовлетворяется, вычисляют результат анализа - среднее арифметическое двух результатов параллельных определений.

    Таблица 7ж

    Массовая доля примеси, %

    Абсолютное допускаемое расхождение двух результатов параллельных определений, %

    0,0010

    0,0005

    0,0050

    0,0014

    0,0100

    0,0028

    Допускаемые расхождения для промежуточных значений массовой доли примеси, не указанных в таблице, находят методом линейной интерполяции.

    4.3.2.4. Контроль правильности результатов - по п. 4.2.4.5.

    4.3.3. Экстракционно-фотометрический метод определения тантала (от 0,02 до 0,10 %)

    Метод основан на измерении оптической плотности толуольного экстракта фтортанталата бриллиантового зеленого.

    4.3.3.1. Аппаратура, материалы и реактивы

    Весы аналитические.

    Таблица 7з

    Определяемый элемент

    Аналитическая линия, нм

    Интервал определяемых значений массовой доли, %

    Вольфрам

    400,87

    От 0,001 до 0,01

    Молибден

    319,40

    » 0,001 » 0,004

    320,88

    » 0,001 » 0,01

    Кобальт

    340,51

    » 0,001 » 0,004

    345,35

    » 0,001 » 0,01

    Плитка электрическая лабораторная с закрытой спиралью мощностью 3 кВт.

    Центрифуга лабораторная, марки ЦЛК-1 или аналогичная.

    Колориметр фотоэлектрический концентрационный КФК-2 или аналогичный.

    Пипетки 1-2-2; 2-2-5; 2-2-10; 2-2-20; 2-2-25; 2-2-50; 6-2-10 по ГОСТ 20292-74.

    Цилиндры 1-500; 1-2000 по ГОСТ 1770-74.

    Бюретки 6-2-5; 1-2-100 по ГОСТ 20292-74.

    Колбы 2-100-2; 2-200-2; 2-500-2 по ГОСТ 1770-741

    Стакан В-1-100 ТС по ГОСТ 25336-82.

    Стакан фторопластовый с носиком вместимостью 100 см3.

    Банка БН-0,5, по ГОСТ 17000-71.

    Бидон БДЦ-5,0 по ГОСТ 17000-71.

    Пробки из пластмассы по ГОСТ 1770-74.

    Цилиндры из полиэтилена вместимостью 60 см3.

    Пробирки центрифужные из полиэтилена вместимостью 10 см3.

    Пипетки из полиэтилена вместимостью 10 см3.

    Кислота серная по ГОСТ 4204-77, х. ч. раствор 5 моль/дм3 и 1,4 моль/дм3.

    Кислота азотная по ГОСТ 4461-77, х. ч.

    Кислота фтористоводородная по ГОСТ 10484-78, х. ч., раствор 7,5 моль/дм3.

    Раствор для отмывки экстрактов с концентрациями серной кислоты 1,18 моль/дм3 и фтористоводородной кислоты 0,98 моль/дм3. Для приготовления 5 дм3 раствора в полиэтиленовый бидон помещают 245 см3 раствора фтористоводородной кислоты 20 моль/дм3, 1175 см3 раствора серной кислоты 5 моль/дм3, 3580 см3 дистиллированной воды и перемешивают в течение 30 - 40 с.

    Бриллиантовый зеленый, ч., раствор 3 г/дм3, готовят растворением 3 г красителя в 1 дм3 воды на холоду в течение 1 ч при перемешивании с помощью электромеханической мешалки.

    Толуол по ГОСТ 5789-78, ч. д. а.

    Ацетон по ГОСТ 2603-79, ч. д. а.

    Аммоний сернокислый по ГОСТ 3769-78, х. ч.

    Порошок танталовый (высокой чистоты), с массовой долей тантала не менее 99,5 %.

    Вода дистиллированная по ГОСТ 6709-72.

    4.3.3.2. Подготовка к измерению

    4.3.3.2.1. Приготовление основного раствора и рабочих растворов

    Основной раствор пятиокиси тантала 0,200 г/дм3: навеску металлического порошка тантала 0,0819 г, взвешенную с погрешностью ± 0,0005 г, помещают во фторопластовый стакан, добавляют полиэтиленовой пипеткой 5,0 см3 концентрированной фтористоводородной кислоты, 0,5 см3 азотной кислоты, нагревают на плитке до полного растворения навески и упаривают до объема 1 - 2 см3. Раствор переводят в мерную колбу вместимостью 500 см3, в которую предварительно помещают 250 см3 дистиллированной воды, доводят до метки и перемешивают в течение 30 - 40 с. Приготовленный раствор хранят в полиэтиленовой посуде.

    Рабочие растворы пятиокиси тантала 2,0 и 20,0 мкг/см3 отбирают пипеткой 2,0 и 20,0 см3 основного раствора в мерные колбы вместимостью 200 см3, добавляют 56,0 см3 раствора серной кислоты 5 моль/дм3, доводят водой до метки и перемешивают в течение 30 - 40 с.

    4.3.3.2.2. Построение градуировочного графика

    В полиэтиленовые ампулы помещают из бюретки 2,0; 4,0; 6,0; 8,0; 10,0 см3 рабочего раствора 2,0 мкг/см3 и 1,0; 2,0; 3,0; 4,0; 5,0 см3 рабочего раствора 20,0 мкг/см3. Доводят раствором серной кислоты концентрации 1,4 моль/дм3 (2,8 н) до 10,0 см3, добавляют полиэтиленовой пипеткой 1,5 см3 раствора фтористоводородной кислоты 7,5 моль/дм3, 25,0 см3 толуола, добавляют из бюретки 11,0 см3 раствора бриллиантового зеленого и встряхивают в течение 60 с на электромеханическом встряхивателе или вручную. После расслаивания фаз в течение 60 - 90 с 10 см3 экстракта помещают в центрифужную пробирку и центрифугируют в течение 3 мин со скоростью 3000 мин-1.

    Оптическую плотность измеряют на КФК-2 в кюветах с толщиной слоя поглощения 5,0 мм в интервале 20 - 100 мкг пятиокиси тантала и 30,0 мм в интервале 4 - 20 мкг пятиокиси тантала при λmax = (590 ± 10) нм. В качестве раствора сравнения применяют толуол.

    Одновременно через все стадии проводят два параллельных контрольных опыта. Оптическая плотность контрольного опыта не должна превышать 0,03 в кювете 30 мм и 0,005 - в кювете 5 мм. По полученным данным строят два градуировочных графика.

    4.3.3.3. Проведение измерений

    Пробу массой 0,1000 г, взвешенную с погрешностью не более 0,0005 г, помещают во фторопластовый стакан, добавляют полиэтиленовой пипеткой 10 см3 концентрированной фтористоводородной кислоты, затем пипеткой 2,0 см3 азотной кислоты и 8,0 см3 концентрированной серной кислоты, нагревают на плитке до начала выделения паров серной кислоты, затем продолжают нагрев еще 2 - 3 мин. Стаканы охлаждают до температуры (25 ± 5) °С, добавляют 3,0 г сульфата аммония, разбавляют водой до 10 см3 и переводят в мерную колбу вместимостью 100 см3, доводят водой до метки и перемешивают 30 - 40 с.

    Аликвотную часть полученного раствора, содержащую 4 - 100 мкг пятиокиси тантала, помещают в полиэтиленовый цилиндр вместимостью 60 см3, доводят раствором серной кислоты концентрации 5 моль/дм3 до 10,0 см3, добавляют 1,5 см3 раствора фтористоводородной кислоты концентрации 7,5 моль/дм3 и оставляют на 8 - 10 мин. Далее добавляют пипеткой 25,0 см3 толуола, 11,0 см3 раствора бриллиантового зеленого и производят экстракцию, как описано в п. 4.3.3.2. После расслаивания фазы разделяют и экстракт в количестве 20 - 25 см3 отмывают. Добавляют 10,5 см3 раствора для отмывки (полиэтиленовой пипеткой), 10,0 см3 раствора бриллиантового зеленого из бюретки и встряхивают, как описано в п. 4.3.3.2. После расслаивания фазы разделяют и экстракт в количестве не менее 16,0 см3 вновь подвергают операции отмывки. После расслаивания фаз 10 см3 экстракта помещают в центрифужную пробирку и центрифугируют в течение 3 мин со скоростью 3000 об/мин.

    Оптическую плотность экстракта измеряют на КФК-2, как описано в п. 4.3.3.2.2. В закрытых полиэтиленовых пробирках экстракты стабильны в течение 4 ч. Допускается проведение экстракции и отмывки экстрактов одновременно в шестнадцати пробирках. Массу пятиокиси тантала определяют по градуировочному графику.

    4.3.3.4. Обработка результатов

    Массовую долю тантала (X) в процентах вычисляют по формуле

    x016.gif

    где m - масса пятиокиси тантала, найденная по градуировочному графику, мкг;

    m1- масса навески пробы, г;

    a - аликвотная часть раствора, отбираемая для экстракции, см3;

    V - объем мерной колбы, равный 100 см3;

    1,221 - коэффициент пересчета.

    За результат измерений принимают среднее арифметическое результатов двух параллельных определений.

    Допускаемые расхождения результатов двух параллельных определений не должны превышать значений допускаемых расхождений, приведенных в табл. 7и.

    4.3.3.5. Контроль правильности анализа

    Контроль правильности анализа проводят методом добавок.

    Суммарная массовая доля тантала в пробе с добавкой должна быть не меньше утроенного значения нижней границы определяемых массовых долей и не больше верхней границы определяемых массовых долей.

    Таблица 7и

    Массовая доля тантала, %

    Допускаемые расхождения, %

    0,02

    0,01

    0,05

    0,01

    0,10

    0,02

    Суммарное содержание тантала 1) в пробе с добавкой в процентах вычисляют по формуле

    x018.gif

    где Хан - массовая доля тантала в пробе, %;

    m1- масса тантала, введенная с добавкой, мкг;

    m2- масса навески пробы, г.

    Анализ считают правильным (Р = 0,95), если разность большей и меньшей из двух величин Х1и результата анализа пробы с добавкой не превышает

    x020.gif

    где d1- допускаемое расхождение между результатами двух параллельных определений в пробе без добавки;

    d2- допускаемое расхождение между результатами двух параллельных определений в пробе с добавкой.

    4.3.1 - 4.3.3.5. (Введены дополнительно, Изм. № 1).

    Источник: ГОСТ 26252-84: Порошок ниобиевый. Технические условия оригинал документа

    Англо-русский словарь нормативно-технической терминологии > MgO

  • 6 CuO

    1. Спектральный метод определения никеля, алюминия, магния, марганца, кобальта, олова, меди и циркония в ниобии

    4.2. Спектральный метод определения никеля, алюминия, магния, марганца, кобальта, олова, меди и циркония в ниобии

    Спектральному методу предшествует перевод анализируемой пробы в пятиокись ниобия.

    Метод основан на измерении интенсивности линий элементов примесей в спектре, полученном при испарении пятиокиси ниобия в смеси с графитовым порошком и хлористым натрием из канала графитового электрода в дуге постоянного тока.

    Массовую долю примесей в ниобии (табл. 4) определяют по градуировочным графикам, построенным в координатах: логарифм отношения интенсивности линии определяемого элемента и интенсивности фона (x004.gif) - логарифм концентрации определяемого элемента (lg C).

    4.2.1. Аппаратура, материалы и реактивы

    Спектрограф дифракционный типа ДФС-13 с решеткой 600 и 1200 штр/мм и трехлинзовой системой освещения щели или аналогичный прибор (фотоэлектрический прибор типа МФС). Допускается использовать спектрограф ДФС-8 с решеткой 1800 штрихов.

    Генератор дуговой типа ДГ-2 с дополнительным реостатом или генератор аналогичного типа.

    Выпрямитель 250 - 300 В, 30 - 50 А.

    Микрофотометр нерегистрирующий типа МФ-2 или аналогичного типа.

    Таблица 4

    Определяемая примесь

    Массовая доля примеси, %

    Никель

    1∙10-3 - 2∙10-2

    Алюминий

    5∙10-4 - 1∙10-2

    Магний

    1∙10-3 - 2∙10-3

    Марганец

    5∙10-4 - 5∙10-3

    Кобальт

    5∙10-4 - 3∙10-2

    Олово

    1∙10-3 - 1∙10-2

    Медь

    3∙10-3 - 5∙10-2

    Цирконий

    1∙10-3 - 2∙10-2

    Спектропроектор типа ПС-18, СП-2 или аналогичного типа.

    Весы аналитические.

    Весы торсионные типа ВТ-500.

    Ступка и пестик из органического стекла.

    Бокс из органического стекла.

    Электропечь муфельная с терморегулятором на температуру до 900 °С.

    Чашки платиновые.

    Станок для заточки графитовых электродов.

    Электроды графитовые, выточенные из графитовых стержней ОС. Ч. 7 - 3 диаметром 6 мм, заточенные на усеченный конус с площадкой диаметром 1,5 мм.

    Электроды графитовые, выточенные из графитовых стержней ОС. Ч. 7 - 3 диаметром 6 мм, с каналом глубиной 5 мм, внешний диаметр - 3,0 мм, внутренний диаметр - 2,0 мм, длина заточенной части - 6 мм.

    Порошок графитовый ОС. Ч. 8 - 4 по ГОСТ 23463-79.

    Фотопластинки спектрографические марок СПЭС и СП-2, размером 9´12/1,2 или 13´18/1,2, обеспечивающие нормальное почернение аналитических линий и близлежащего фона в спектре.

    Лампа инфракрасная ИКЗ-500 с регулятором напряжения РНО-250-0,5 или аналогичным.

    Спирт этиловый ректификованный по ГОСТ 18300-72, дважды перегнанный в кварцевом приборе.

    Никеля окись черная по ГОСТ 4331-78, ч.

    Алюминия окись безводная для спектрального анализа, х. ч.

    Магния окись по ГОСТ 4526-75, ч. д. а.

    Марганца (IV) окись по ГОСТ 4470-79, ч. д. а.

    Кобальта (II - III) окись по ГОСТ 4467-79, ч. или ч. д. а.

    Олова двуокись, ч. д. а.

    Циркония двуокись по ГОСТ 21907-76.

    Меди (II) окись по ГОСТ 16539-79.

    Натрий хлористый ОС. Ч. 6 - 1.

    Ниобия пятиокись, в которой содержание определяемых элементов не превышает установленной для метода нижней границы диапазона определяемых массовых долей.

    Проявитель:

    метол........................................................................................ 2,2 г

    натрий сернистокислый безводный по ГОСТ 195-77......... 96 г

    гидрохинон по ГОСТ 19627-74............................................. 8,8 г

    натрий углекислый по ГОСТ 83-79...................................... 48 г

    калий бромистый по ГОСТ 4160-74..................................... 5 г

    вода........................................................................................... до 1000 см3.

    Фиксаж:

    тиосульфат натрия кристаллический по СТ СЭВ 223-75... 300 г

    аммоний хлористый по ГОСТ 3773-72................................ 20 г

    вода........................................................................................... до 1000 см3.

    4.2.2. Приготовление буферной смеси

    Буферную смесь, состоящую из 90 % угольного порошка и 10 % хлористого натрия готовят, смешивая 0,9000 г угольного порошка и 0,1000 г хлористого натрия с 20 см3 спирта в течение 30 мин и высушивая под инфракрасной лампой.

    4.2.3. Приготовление образцов сравнения (ОС)

    Основной образец сравнения, содержащий по 1 % никеля, алюминия, магния, марганца, кобальта, олова, циркония и меди, готовят механическим истиранием и перемешиванием буферной смеси с окислами соответствующих металлов.

    Навески массой 0,0141 г окиси никеля, 0,0189 г окиси алюминия, 0,0186 г окиси магния, 0,0158 г окиси марганца (IV) 0,0136 г (II - III)-окиси кобальта, 0,0127 г двуокиси олова, 0,0125 г окиси меди и 0,0140 г двуокиси циркония помещают в ступке из органического стекла и добавляют 0,8818 г буферной смеси. Смесь тщательно перемешивают, добавляя спирт для поддержания смеси в кашицеобразном состоянии, в течение 1 ч и высушивают под инфракрасной лампой до постоянной массы.

    Последовательным разбавлением основного образца сравнения буферной смесью готовят серию образцов сравнения (ОС) с убывающей концентрацией определяемых элементов. Содержание каждой из определяемых примесей (в процентах на содержание металла в металлическом ниобии) и вводимые в смесь навески буферной смеси и разбавляемого образца приведены в табл. 5.

    Образцы сравнения хранят в полиэтиленовых банках с крышками.

    Таблица 5

    Обозначение образца

    Массовая доля каждой из определяемых примесей, %

    Масса навески, г

    буферной смеси

    разбавляемого образца

    ОС 1

    1∙10-1

    3,3930

    0,3770 (основной образец)

    ОС 2

    5∙10-2

    1,7700

    1,7700 (ОС 1)

    ОС 3

    2∙10-2

    2,3100

    1,5400 (ОС 2)

    ОС 4

    1∙10-2

    1,8500

    1,8500 (ОС 3)

    ОС 5

    5∙10-3

    1,7000

    1,7000 (ОС 4)

    ОС 6

    2∙10-3

    2,1000

    1,4000 (ОС 5)

    ОС 7

    1∙10-3

    1,5000

    1,5000 (ОС 6)

    ОС 8

    5∙10-4

    1,0000

    1,0000 (ОС 7)

    4.1.2 - 4.2.3. (Измененная редакция, Изм. № 1).

    4.2.4. Проведение анализа

    4.2.4.1. Перевод металлического ниобия в пятиокись ниобия

    Пробу металлического ниобия 1 - 3 г помещают в платиновую чашку и прокаливают в муфельной печи при температуре 800 - 900 °С в течение 2 ч. Полученную пятиокись ниобия в виде белого порошка охлаждают в эксикаторе, помещают в пакет из кальки к передают на спектральный анализ.

    4.2.4.2. Определение никеля, алюминия, магния, марганца, кобальта, олова, меди и циркония

    Пробы и образцы сравнения готовят в боксе. Для этого 100 мг пробы и 100 мг буферной смеси или 100 мг образца сравнения и 100 мг пятиокиси ниобия тщательно растирают в плексигласовой ступке в течение 5 мин. Подготовленную пробу или образец сравнения набивают в каналы трех графитовых электродов, предварительно обожженных в дуге постоянного тока при 7 А в течение 5 с.

    Электроды устанавливают в штатив в вертикальном положении. Верхним электродом служит графитовый стержень, заточенный на конус. Между электродами зажигают дугу постоянного тока силой 7 А с последующим повышением (в течение 20 с) до 15 А. Электрод с пробой включен анодом.

    Во избежание выброса материала из кратера электродов, ток включают при сомкнутых электродах с их последующим разведением, величина которого контролируется по проекции на промежуточной диафрагме. Время экспозиции - 120 с, промежуточная диафрагма - 5 мм.

    Спектры в области длин волн 2500 - 3500 нм фотографируют с помощью спектрографа ДФС-13 с решеткой 600 штр/мм, используя трехлинзовую систему освещения щели на фотопластинку тип II чув. 15 ед., ширина щели спектрографа 15 мкм.

    4.2.4.3. Определение меди

    Пробу, приготовленную по п. 4.2.4.2, помещают в канал графитового электрода. Электрод с пробой или образцом сравнения служит анодом (нижний электрод). Верхним электродом является графитовый электрод, заточенный на конус. Между электродами зажигают дугу постоянного тока. В первые 15 с сила тока - 5 А, последующие 1 мин 45 с - 15 А. Полная экспозиция 120 с. Спектры фотографируют на спектрографе ДФС-13 с решеткой 1200 штр/мм с трехлинзовой осветительной системой. Фотопластинка типа ЭС чув. 9. Промежуточная диафрагма 0,8 мм. Шкалу длин волн устанавливают на 320 нм. Ширина щели спектрографа 15 мкм. Во время экспозиции расстояние между электродами поддерживают равным 3 мм.

    Спектр каждой пробы и каждого образца сравнения регистрируют на фотопластинке по три раза. Экспонированные пластинки проявляют, промывают водой, фиксируют, окончательно промывают и сушат.

    4.2.4.1 - 4.2.4.3. (Измененная редакция, Изм. № 1).

    4.2.4.4. Обработка результатов

    В каждой спектрограмме фотометрируют почернения аналитической линии определяемого элемента Sл+ф (табл. 6) и близлежащего фона Sф и вычисляют разность почернений DS = Sл+a - Sф.

    Таблица 6

    Определяемый элемент

    Длина волны аналитической линии, нм

    Алюминий

    309,2

    Магний

    279,5

    Марганец

    279,4

    Медь

    327,4

    Олово

    284,0

    Цирконий

    339,2

    Никель

    300,2

    Кобальт

    304,4

    По трем параллельным значениям DS1, DS2, DS3, полученным по трем спектрограммам, снятым для каждого образца, находят среднее арифметическое результатов x006.gif.

    От полученных средних значений x008.gif переходят к значениям x009.gif с помощью таблиц, приведенных в приложении к ГОСТ 13637.1-77.

    Используя значения lg C и x010.gif для образцов сравнения, строят градуировочный график в координатах x011.gif, lg C. По этому графику по значениям x012.gif для пробы определяют содержание примеси в пробе.

    Разность наибольших и наименьших из результатов трех параллельных и результатов двух анализов с доверительной вероятностью Р = 0,95 не должна превышать величин допускаемых расхождений, приведенных в табл. 7.

    Таблица 7

    Определяемый элемент

    Массовая доля, %

    Допускаемое расхождение, %

    параллельных определений

    результатов анализов

    Алюминий

    0,0005

    0,005

    0,01

    0,0003

    0,003

    0,006

    0,0002

    0,002

    0,004

    Цирконий

    0,001

    0,005

    0,01

    0,0006

    0,003

    0,005

    0,0004

    0,002

    0,003

    Магний

    0,001

    0,005

    0,01

    0,0006

    0,004

    0,006

    0,0001

    0,003

    0,004

    Марганец

    0,0005

    0,005

    0,01

    0,0003

    0,003

    0,006

    0,0002

    0,002

    0,004

    Медь

    0,005

    0,01

    0,06

    0,003

    0,003

    0,006

    0,02

    0,002

    0,002

    0,003

    0,01

    0,002

    Олово

    0,001

    0,005

    0,01

    0,0006

    0,003

    0,005

    0,0004

    0,002

    0,003

    Никель

    0,001

    0,005

    0,001

    0,0006

    0,003

    0,005

    0,0004

    0,002

    0,003

    Кобальт

    0,0005

    0,005

    0,01

    0,0003

    0,003

    0,005

    0,0002

    0,002

    0,003

    Допускаемые расхождения для промежуточных содержаний рассчитывают методом линейной интерполяции.

    4.2.4.5. Контроль правильности результатов

    Правильность результатов анализа серии проб контролируют для каждой определенной примеси при переходе к новому комплекту образцов сравнения, С этой целью для одной и той же пробы, содержащей определенную примесь в контролируемом диапазоне концентраций с использованием старого и нового комплектов образцов сравнения, получают четыре результата анализа и вычисляют средние арифметические значения. Затем находят разность большего и меньшего значений. Результаты анализа считают правильными, если указанная разность не превышает допускаемых расхождений результатов двух анализов пробы по содержанию определяемой примеси.

    Контроль правильности проводят для каждого интервала между ближайшими по содержанию образцами сравнения по мере поступления на анализ соответствующих проб.

    4.3. Массовую долю тантала, титана, кремния, железа, вольфрама, молибдена определяют по ГОСТ 18385.1-79 - ГОСТ 18385.4-79 или спектральными методами (пп. 4.3.1 - 4.3.3), кислорода и водорода - по ГОСТ 22720.1-77, азота - по ГОСТ 22720.1-77 или ГОСТ 22720.4-77.

    Допускается применять другие методы анализа примесей, по точности не уступающие указанным.

    При разногласиях в оценке химического состава его определяют по ГОСТ 18385.1-79 - ГОСТ 18385.4-79, ГОСТ 22720.1-77, ГОСТ 22720.1-77 и ГОСТ 22720.4-77.

    Массовую долю углерода определяют по ГОСТ 22720.3-77. Кроме анализатора АН-160, допускается использовать приборы АН-7529 и АН-7560.

    4.2.4.4. - 4.3. (Измененная редакция, Изм. № 1).

    4.3.1. Спектральный метод определения примесей титана, кремния, железа, никеля, алюминия, магния, марганца, олова, меди, циркония, при массовой доле каждой примеси от 0,001 до 0,02.

    Метод основан на возбуждении дугой постоянного тока и фотографической регистрации спектров образцов сравнения и спектров анализируемого материала, превращенного в оксиды прокаливанием, с последующим определением массовой доли примесей по градуировочным графикам, построенным в координатах: логарифм отношения интенсивности линии определяемого элемента к интенсивности фона lg(Iл/Iф) - логарифм массовой доли определяемого элемента lg C.

    Относительное среднее квадратическое отклонение, характеризующее сходимость результатов параллельных определений, при массовой доле каждой примеси 0,001 % составляет 0,15, при массовой доле каждой примеси 0,02 % - 0,11.

    Суммарная погрешность результата анализа с доверительной вероятностью Р = 0,95 при массовой доле примеси 0,00100 % не должна превышать ± 0,00023 % абс, при массовой доле примеси 0,0200 % - ± 0,0033 % абс.

    4.3.1.1. Аппаратура, материалы и реактивы

    Спектрограф ДФС-13 с решеткой 1200 штр/мм или аналогичный.

    Источник постоянного тока УГЭ, или ВАС-275-100, или аналогичный.

    Микроденситометр МД-100, или микрофотометр МФ-2, или аналогичный.

    Спектропроектор типа ПС-18, или ДСП-2, или аналогичный.

    Весы аналитические с погрешностью взвешивания не более 0,0002 г.

    Весы торсионные ВТ-500 или аналогичные с погрешностью взвешивания не более 0,002 г.

    Печь муфельная с терморегулятором, на температуру от 400 до 1100 °С.

    Шкаф сушильный типа СНОД 3.5.3.5.3.5./3М или аналогичный.

    Станок для заточки графитовых электродов.

    Ступки и пестики из оргстекла.

    Чашки платиновые по ГОСТ 6563-75.

    Фотопластинки спектральные: диапозитивные, СП-2, СП-ЭС, обеспечивающие в условиях анализа нормальные почернения аналитических линий и близлежащего фона в спектре.

    Порошок графитовый ос. ч. 8 - 4 по ГОСТ 23463-79 или аналогичный, обеспечивающий чистоту по определяемым примесям. Нижние электроды, выточенные из графитовых стержней ос. ч. 7 - 3 диаметром 6 мм, имеющие размеры, мм:

    высота заточенной части....................... 10

    диаметр заточенной части.................... 4,0

    глубина кратера...................................... 3,8

    диаметр кратера..................................... 2,5

    Верхние электроды из графитовых стержней ос. ч. 7 - 3 диаметром 6 мм, заточенные на усеченный конус с площадкой диаметром 1,5 мм, высотой заточенной конической части 4 мм.

    Натрий фтористый, ос. ч. 7 - 3.

    Ниобия пятиокись для оптического стекловарения, ос. ч. 7 - 3.

    Титана (IV) двуокись, ос. ч. 7 - 3.

    Кремния (IV) двуокись по ГОСТ 9428-73, ч. д. а.

    Железа (III) окись, ос. ч. 2 - 4.

    Никеля (II) закись, ч. д. а.

    Алюминия (III) окись, х. ч.

    Магния (II), ч. д. а.

    Марганца (IV) окись, ос. ч. 9 - 2.

    Олова (IV) окись, ч. д. а.

    Меди (II) окись (гранулированная) по ГОСТ 16539-79.

    Циркония (IV) двуокись, ос. ч. 6 - 2.

    Спирт этиловый ректификованный по ГОСТ 18300-87.

    Лак идитоловый, 1 %-ный спиртовый раствор.

    Метол по ГОСТ 25664-83.

    Гидрохинон по ГОСТ 19627-74.

    Натрий сернистокислый (сульфит) по ГОСТ 195-77.

    Натрий углекислый по ГОСТ 83-79.

    Калий бромистый по ГОСТ 4160-74.

    Натрия тиосульфат кристаллический по ГОСТ 244-76.

    Калий сернистокислый пиро (метабисульфит).

    Вода дистиллированная по ГОСТ 6709-72.

    Проявитель, готовят следующим образом: 2 г метола, 52 г сульфита натрия, 10 г гидрохинона, 40 г углекислого натрия, 5 г бромистого калия растворяют в воде, в указанной последовательности доводят объем раствора водой до 1000 см3, перемешивают и фильтруют.

    Фиксаж, готовят следующим образом: 250 г тиосульфата натрия и 25 г метабисульфита калия растворяют в указанной последовательности в 750 - 800 см3 воды, доводят объем раствора водой до 1000 см3, перемешивают и фильтруют.

    Допускается применять проявитель и фиксаж, рекомендованные для применяемых фотопластинок.

    Основная смесь, представляющая собой механическую смесь оксида ниобия и оксидов определяемых элементов с массовой долей каждой примеси 1 % в расчете на содержание металла в смеси металлов. Для ее приготовления каждый препарат оксида помещают в отдельную чашку, прокаливают в течение 90 мин в муфельной печи при температурах, указанных в табл. 7, охлаждают в эксикаторе и берут навески, указанные в табл. 7а. Переносят в ступку сначала приблизительно одну четвертую часть навески пятиокиси ниобия, затем полностью навески оксидов всех элементов-примесей и тщательно растирают смесь в ступке в течение 60 мин, добавляя спирт для поддержания смеси в кашицеобразном состоянии. Затем в ту же ступку переносят оставшуюся часть навески пятиокиси ниобия и опять тщательно растирают смесь в течение 60 мин, добавляя спирт для поддержания смеси в кашицеобразном состоянии. После этого смесь сушат в сушильном шкафу, а затем прокаливают при температуре (400 ± 20) °С в течение 60 мин и охлаждают в эксикаторе.

    Промежуточная смесь и рабочие образцы сравнения (РОС1 - РОС4); готовят, смешивая указанные в табл. 7б массы пятиокиси ниобия, основной смеси, промежуточной смеси и рабочего образца сравнения РОС2. Перед взятием навесок пятиокись ниобия прокаливают 90 мин при (950 ± 20) °С, а ОС, ПС и РОС2 - при температуре (400 ± 20) °С в течение 60 мин и охлаждают в эксикаторе. Смешивают тщательным растиранием в ступке в течение 60 мин, добавляя спирт для поддержания смеси в кашицеобразном состоянии. После этого смесь сушат в сушильном шкафу, прокаливают при температуре (400 ± 20) °С в течение 60 мин и охлаждают в эксикаторе.

    Буферная смесь 95 % графитового порошка и 5 % фтористого натрия. Навески помещают в ступку и тщательно растирают в течение 30 мин.

    4.3.1.2. Проведение анализа

    Навеску порошка металлического ниобия массой 0,5 г помещают в платиновую чашку, прокаливают в муфельной печи при температуре 800 - 850 °С в течение 2 ч и охлаждают в эксикаторе. Переносят в ступку и смешивают с буферной смесью в соотношении 2:1 (по массе), помещают в пакет из кальки.

    Каждый из рабочих образцов сравнения РОС1 - РОС4 также смешивают с буферной смесью в соотношении 2:1 (по массе).

    Верхние и нижние электроды обжигают в дуге переменного тока при силе тока 10 А в течение 10 с.

    Каждой из полученных смесей (смесь, полученная из навески пробы, и полученные из РОС1 - РОС4) плотно заполняют кратеры шести нижних электродов неоднократным погружением электродов в пакет со смесью. После этого в каждый нижний электрод помещают 2 капли спиртового раствора идитолового лака. Подсушивают электроды в сушильном шкафу при температуре 80 - 90 °С в течение (15 ± 1) мин.

    В кассету спектрографа помещают:

    в коротковолновую область спектра - диапозитивную фотопластинку;

    в длинноволновую - фотопластинку марки СП-2.

    Нижний электрод (с материалом пробы или с материалом рабочего образца сравнения) включают анодом дуги постоянного тока. Спектры фотографируют при следующих условиях:

    сила тока................................................ 10 ± 0,5 А

    межэлектродный промежуток............. 2 мм

    экспозиция............................................. (40 ± 3) с

    щель спектрографа................................ (0,020 ± 0,001) мм

    промежуточная диафрагма.................. (5,0 ± 0,1) мм

    деление шкалы длин волн.................... (303,0 ± 2,5) нм

    Фотографируют по три раза спектр каждого рабочего образца сравнения и по три раза спектр каждой пробы, используя для каждого образца сравнения (или пробы) три из шести нижних электродов. Затем фотографирование спектров повторяют, используя оставшиеся три заполненных пробой (образцом сравнения) нижних электрода.

    Экспонированные фотопластинки проявляют, промывают водой, фиксируют, окончательно промывают водой и сушат.

    4.3.1.3. Обработка результатов

    В каждой фотопластинке фотометрируют почернения аналитических линий определяемого элемента Sл+ф(табл. 7в) и близлежащего фона Sф и вычисляют разность почернений DS = Sл+ф - Sф.

    По трем значениям DS1, DS2, DS3, полученным из трех спектрограмм, снятым для каждого образца на одной фотопластинке, находят среднее арифметическое DS. От полученных значений DS переходят к значениям lg(Iл/Iф) с помощью таблиц, приведенных в ГОСТ 13637.1-77.

    Таблица 7а

    Наименование препарата

    Формула

    Температура прокаливания перед взвешиванием, °С (пред. откл. ± 20 °С)

    Масса навески прокаленного препарата оксида, г

    Коэффициент пересчета массы металла на массу оксида

    Масса металла в навеске оксида, г

    Массовая доля металла в смеси металлов, %

    Пятиокись ниобия

    Nb2O5

    950

    10,2996

    1,4305

    7,2000

    90

    Двуокись титана

    TiO2

    1100

    0,1334

    1,6680

    0,0800

    1

    Двуокись кремния

    SiO2

    1100

    0,1711

    2,1393

    0,0800

    1

    Окись железа

    Fe2O3

    800

    0,1144

    1,4297

    0,0800

    1

    Закись никеля

    NiO

    600

    0,1018

    1,2725

    0,0800

    1

    Окись алюминия

    Al2O3

    1100

    0,1512

    1,8895

    0,0800

    1

    Окись магния

    MgO

    1100

    0,1327

    1,6583

    0,0800

    1

    Окись марганца

    MnO2

    400

    0,1266

    1,5825

    0,0800

    1

    Окись олова

    SnO2

    600

    0,1016

    1,2696

    0,0800

    1

    Окись меди

    CuO

    700

    0,1001

    1,2518

    0,0800

    1

    Двуокись циркония

    ZrO2

    1100

    0,1081

    1,3508

    0,0800

    1

    11,5406

    8,0000

    100

    Используя значения lg C (где С - массовая доля определяемой примеси по табл. 7б) и полученные по первой фотопластинке значения lg(Iл/Iф) для рабочих образцов сравнения РОС1 - РОС4, строят градуировочный график в координатах lgC, lg(Iл/Iф). По этому графику, используя полученное по той же фотопластинке значение lg(Iл/Iф) для пробы, определяют массовую долю примеси в пробе - первый из двух результатов параллельных определений данной примеси.

    Таблица 7б

    Обозначение образца

    Массовая доля каждой примеси в расчете на содержание металла в смеси металлов, %

    Масса навески, г

    Суммарная масса смеси оксидов, содержащая 8 г металла, г

    прокаленного препарата пятиокиси ниобия

    разбавляемого образца (в скобках приведено его обозначение)

    Промежуточная смесь

    0,100

    10,2996

    1,1541 (ОС)

    11,4537

    РОС1

    0,020

    9,1552

    2,2907 (ПС)

    11,4459

    РОС2

    0,009

    10,4140

    1,0308 (ПС)

    11,4443

    POС4

    0,004

    10,1726

    1,2716 (РОС2)

    11,4442

    РОС3

    0,003

    11,1007

    0,3436 (ПС)

    11,4443

    Таблица 7в

    Определяемый элемент

    Аналитическая линия, нм

    Магний

    285,21

    Кремний

    288,16

    Марганец

    294,92

    Никель

    300,25

    Железо

    302,06

    Титан

    307,86

    Алюминий

    308,22

    Цирконий

    316,60

    Олово

    317,50

    Медь

    327,47

    Результат второго параллельного определения получают таким же образом по второй пластинке.

    Разность большего и меньшего результатов параллельных определений с доверительной вероятностью Р = 0,95 не должна превышать допускаемого расхождения, указанного в табл. 7г.

    Таблица 7г

    Массовая доля примеси, %

    Абсолютное допускаемое расхождение двух результатов параллельных определений, %

    0,0010

    0,0004

    0,020

    0,006

    Допускаемое расхождение для промежуточных значений массовой доли примеси, не указанных в таблице, находят методом линейного интерполирования.

    Если этот норматив удовлетворяется, вычисляют результат анализа - среднее арифметическое результатов двух параллельных определений.

    4.3.1.4. Контроль правильности результатов - по п. 4.2.4.5.

    4.3.2. Спектральный метод определения примесей вольфрама, молибдена и кобальта при массовой доле каждой примеси от 0,001 до 0,01 %

    Метод основан на возбуждении дугой постоянного тока и фотографической регистрации спектров образцов сравнения и анализируемого материала, превращенного в оксиды прокаливанием, с. последующим определением массовой доли примесей по градуировочным графикам.

    Относительное среднее квадратическое отклонение, характеризующее сходимость результатов параллельных определений каждой примеси, составляет 0,17 - при массовой доле примеси и 0,10 - при массовой доле примеси 0,005 - 0,010 %.

    4.3.2.1. Аппаратура, материалы и реактивы

    Спектрограф ДФС-13 с решеткой 600 штр/мм или аналогичный.

    Источник постоянного тока ВАС-275-100 или аналогичный.

    Микрофотометр МФ-2 или аналогичный.

    Спектропроектор ДСП-2 или аналогичный.

    Шкаф сушильный типа СНОД 3.5.3.5.3.5/3М или аналогичный.

    Весы аналитические с погрешностью взвешивания не более 0,0002 г.

    Весы торсионные ВТ-500 или аналогичные.

    Печь муфельная с терморегулятором на температуру от 400 до 1000 °С.

    Электроплитки с закрытой спиралью и покрытием, исключающим загрязнение определяемыми элементами.

    Станок для заточки графитовых электродов.

    Ступки и пестики из оргстекла.

    Чашки платиновые по ГОСТ 6563-75.

    Эксикаторы.

    Фотопластинки формата 9´12 см спектральные тип II и ЭС или аналогичные, обеспечивающие в условиях анализа нормальные почернения аналитических линий и фона в спектре.

    Нижние электроды типа «рюмка», выточенные из графитовых стержней ос. ч. 7 - 3 диаметром 6 мм, имеющие размеры, мм:

    высота «рюмки»...................... 5

    глубина кратера...................... 3

    диаметр кратера...................... 4

    диаметр шейки........................ 3,5

    высота шейки.......................... 3,5

    Верхние электроды - стержни диаметром 6 мм из графита ос. ч. 7 - 3, заточенные на цилиндр диаметром 4 мм.

    Кислота соляная по ГОСТ 14261-77, ос. ч.

    Ниобия пятиокись, ос. ч. 7 - 3, в спектре которой в условиях анализа отсутствуют аналитические линии определяемых примесей.

    Вольфрама (VI) окись, ч. д. а.

    Молибдена (IV) окись, ч. д. а.

    Кобальта (II, III) окись по ГОСТ 4467-79.

    Сурьмы (III) окись, х. ч.

    Свинец хлористый.

    Калий сернокислый, ос. ч. 6 - 4.

    Спирт этиловый ректификованный по ГОСТ 18300-87.

    Метол по ГОСТ 25664-83.

    Гидрохинон по ГОСТ 5644-75.

    Натрий сернистокислый (сульфит) по ГОСТ 195-77.

    Калий бромистый по ГОСТ 4160-74, ч. д. а.

    Натрий углекислый по ГОСТ 83-79, ч. д. а.

    Натрия тиосульфат кристаллический по ГОСТ 244-76.

    Калий сернистокислый пиро (метабисульфит).

    Вода дистиллированная по ГОСТ 6709-72.

    Посуда химическая термостойкая: стаканы вместимостью на 100, 500 и 1000 см3, воронки.

    Проявитель, готовят следующим образом: 2 г метола, 52 г сульфита натрия, 10 г гидрохинона, 40 г углекислого натрия, 5 г бромистого калия растворяют в воде в указанной последовательности, доводят объем раствора водой до 1000 см3, перемешивают и фильтруют.

    Фиксаж, готовят следующим образом: 250 г тиосульфата натрия и 25 г метабисульфита калия растворяют в указанной последовательности в 750 - 800 см3 воды, доводят объем раствора водой до 1000 см3, перемешивают и фильтруют.

    Допускается применять проявитель и фиксаж, рекомендованные для применяемых фотопластинок.

    Буферная смесь, готовят следующим образом: тщательно растирают в ступке 7,4900 г хлористого свинца, 2,5000 г сернокислого калия, 0,0100 г окиси сурьмы. Время истирания на виброистирателе 40 - 50 мин, вручную - 90 - 120 мин.

    Основная смесь, представляющая собой механическую смесь оксидов ниобия и определяемых примесей с массовой долей каждой примеси 1 % в расчете на содержание металла в смеси металлов. Для приготовления смеси каждый препарат оксидов помещают в отдельную чашку, прокаливают в течение 90 мин в муфельной печи при температурах, указанных в табл. 7д, охлаждают в эксикаторе и берут навески, указанные в табл. 7д. Переносят в ступку сначала приблизительно 1/4 часть навески пятиокиси ниобия, затем полностью навески оксидов всех примесей и тщательно растирают смесь в ступке в течение 60 мин, добавляя спирт для поддержания смеси в кашицеобразном состоянии. Затем в ту же ступку переносят оставшуюся часть навески пятиокиси ниобия и опять тщательно растирают смесь в течение 60 мин, добавляя спирт для поддержания смеси в кашицеобразном состоянии. После этого смесь сушат в сушильном шкафу, затем прокаливают при температуре (400 ± 20) °C в течение 60 мин и охлаждают в эксикаторе.

    Промежуточную смесь и рабочие образцы сравнения (РОС1 - РОС4) готовят, смешивая указанные в табл. 7е навески пятиокиси ниобия, основной смеси, промежуточной смеси и рабочего образца сравнения РОС1. Перед взятием навесок пятиокись ниобия прокаливают 90 мин при (950 ± 20) °С, а ОС, ПС и РОС1 - при температуре (400 ± 20) °С в течение 60 мин; охлаждают в эксикаторе. Смешивают тщательным растиранием в ступке в течение 90 мин, добавляя спирт для поддержания смеси в кашицеобразном состоянии. После этого смесь сушат в сушильном шкафу, прокалива

    Таблица 7д

    Наименование препарата

    Формула

    Температура прокаливания перед взвешиванием, °С

    Масса навески прокаленного препарата оксида, г

    Коэффициент пересчета массы металла на массу оксида

    Масса металла в навеске оксида, г

    Массовая доля металла в смеси металлов, %

    Пятиокись ниобия

    Nb2O5

    900 - 1000

    13,8759

    1,4305

    9,7000

    97

    Трехокись вольфрама

    WO3

    650

    0,1261

    1,2611

    0,1000

    1

    Трехокись молибдена

    MoO3

    450 - 500

    0,1500

    1,5003

    0,1000

    1

    Окись кобальта

    Со2О3

    800

    0,1407

    1,4072

    0,1000

    1

    14,2927

    10,0000

    100

    находят значения lg(Iл/Iф), пользуясь таблицами по ГОСТ 13637-77. Используя значения lg C ( где С - массовая доля вольфрама по табл. 7е) и полученные по первой фотопластинке значения lg(Iл/Iф) для рабочих образцов сравнения РОС1 - РОС4, строят градуировочный график в координатах lgC, lg(Iл/Iф). Поэтому графику, используя полученные по той же фотопластинке значения lg(Iл/Iф) для пробы, определяют массовую долю вольфрама в пробе - первый из двух результатов параллельных определений. Результат второго параллельного определения вольфрама получают таким же образом по второй фотопластинке.

    При определении молибдена и кобальта для каждого из трех спектров (пробы или образца сравнения), снятых на одной фотопластинке, находят значение DS = Sл - Scи вычисляют среднее арифметическое трех значений - значение x014.gif. По полученным значениям DS для образцов сравнения строят градуировочный график в координатах lgC, DS, где С - массовая доля определяемого элемента в образцах сравнения согласно табл. 7. По этому графику, используя полученные по той же фотопластинке значения DS для пробы, определяют массовую долю определяемого элемента в пробе - первый из двух результатов параллельных определений. Результат второго параллельного определения получают таким же образом по второй фотопластинке.

    Таблица 7е

    Обозначение образца

    Массовая доля каждой из определяемых примесей, в расчете на содержание металла в смеси металлов, %

    Масса навески, г

    Суммарная масса смеси оксидов, содержащая 10 г металлов, г

    прокаленного препарата пятиокиси ниобия

    разбавляемого образца (в скобках приведено его обозначение)

    ПС

    0,100

    12,8745

    1,4293 (ПС)

    14,3038

    РОС1

    0,010

    12,8745

    1,4301 (ПС)

    14,3049

    РОС2

    0,004

    13,7328

    0,5722 (ПС)

    14,3050

    РОС3

    0,002

    14,0189

    0,2861 (ПС)

    14,3050

    РОС4

    0,001

    12,8745

    1,4305 (РОС1)

    14,3050

    Разность большего и меньшего результатов параллельных определений элемента с доверительной вероятностью Р = 0,95 не должна превышать допускаемого расхождения, приведенного в табл. 7ж и табл. 7з.

    Если этот норматив удовлетворяется, вычисляют результат анализа - среднее арифметическое двух результатов параллельных определений.

    Таблица 7ж

    Массовая доля примеси, %

    Абсолютное допускаемое расхождение двух результатов параллельных определений, %

    0,0010

    0,0005

    0,0050

    0,0014

    0,0100

    0,0028

    Допускаемые расхождения для промежуточных значений массовой доли примеси, не указанных в таблице, находят методом линейной интерполяции.

    4.3.2.4. Контроль правильности результатов - по п. 4.2.4.5.

    4.3.3. Экстракционно-фотометрический метод определения тантала (от 0,02 до 0,10 %)

    Метод основан на измерении оптической плотности толуольного экстракта фтортанталата бриллиантового зеленого.

    4.3.3.1. Аппаратура, материалы и реактивы

    Весы аналитические.

    Таблица 7з

    Определяемый элемент

    Аналитическая линия, нм

    Интервал определяемых значений массовой доли, %

    Вольфрам

    400,87

    От 0,001 до 0,01

    Молибден

    319,40

    » 0,001 » 0,004

    320,88

    » 0,001 » 0,01

    Кобальт

    340,51

    » 0,001 » 0,004

    345,35

    » 0,001 » 0,01

    Плитка электрическая лабораторная с закрытой спиралью мощностью 3 кВт.

    Центрифуга лабораторная, марки ЦЛК-1 или аналогичная.

    Колориметр фотоэлектрический концентрационный КФК-2 или аналогичный.

    Пипетки 1-2-2; 2-2-5; 2-2-10; 2-2-20; 2-2-25; 2-2-50; 6-2-10 по ГОСТ 20292-74.

    Цилиндры 1-500; 1-2000 по ГОСТ 1770-74.

    Бюретки 6-2-5; 1-2-100 по ГОСТ 20292-74.

    Колбы 2-100-2; 2-200-2; 2-500-2 по ГОСТ 1770-741

    Стакан В-1-100 ТС по ГОСТ 25336-82.

    Стакан фторопластовый с носиком вместимостью 100 см3.

    Банка БН-0,5, по ГОСТ 17000-71.

    Бидон БДЦ-5,0 по ГОСТ 17000-71.

    Пробки из пластмассы по ГОСТ 1770-74.

    Цилиндры из полиэтилена вместимостью 60 см3.

    Пробирки центрифужные из полиэтилена вместимостью 10 см3.

    Пипетки из полиэтилена вместимостью 10 см3.

    Кислота серная по ГОСТ 4204-77, х. ч. раствор 5 моль/дм3 и 1,4 моль/дм3.

    Кислота азотная по ГОСТ 4461-77, х. ч.

    Кислота фтористоводородная по ГОСТ 10484-78, х. ч., раствор 7,5 моль/дм3.

    Раствор для отмывки экстрактов с концентрациями серной кислоты 1,18 моль/дм3 и фтористоводородной кислоты 0,98 моль/дм3. Для приготовления 5 дм3 раствора в полиэтиленовый бидон помещают 245 см3 раствора фтористоводородной кислоты 20 моль/дм3, 1175 см3 раствора серной кислоты 5 моль/дм3, 3580 см3 дистиллированной воды и перемешивают в течение 30 - 40 с.

    Бриллиантовый зеленый, ч., раствор 3 г/дм3, готовят растворением 3 г красителя в 1 дм3 воды на холоду в течение 1 ч при перемешивании с помощью электромеханической мешалки.

    Толуол по ГОСТ 5789-78, ч. д. а.

    Ацетон по ГОСТ 2603-79, ч. д. а.

    Аммоний сернокислый по ГОСТ 3769-78, х. ч.

    Порошок танталовый (высокой чистоты), с массовой долей тантала не менее 99,5 %.

    Вода дистиллированная по ГОСТ 6709-72.

    4.3.3.2. Подготовка к измерению

    4.3.3.2.1. Приготовление основного раствора и рабочих растворов

    Основной раствор пятиокиси тантала 0,200 г/дм3: навеску металлического порошка тантала 0,0819 г, взвешенную с погрешностью ± 0,0005 г, помещают во фторопластовый стакан, добавляют полиэтиленовой пипеткой 5,0 см3 концентрированной фтористоводородной кислоты, 0,5 см3 азотной кислоты, нагревают на плитке до полного растворения навески и упаривают до объема 1 - 2 см3. Раствор переводят в мерную колбу вместимостью 500 см3, в которую предварительно помещают 250 см3 дистиллированной воды, доводят до метки и перемешивают в течение 30 - 40 с. Приготовленный раствор хранят в полиэтиленовой посуде.

    Рабочие растворы пятиокиси тантала 2,0 и 20,0 мкг/см3 отбирают пипеткой 2,0 и 20,0 см3 основного раствора в мерные колбы вместимостью 200 см3, добавляют 56,0 см3 раствора серной кислоты 5 моль/дм3, доводят водой до метки и перемешивают в течение 30 - 40 с.

    4.3.3.2.2. Построение градуировочного графика

    В полиэтиленовые ампулы помещают из бюретки 2,0; 4,0; 6,0; 8,0; 10,0 см3 рабочего раствора 2,0 мкг/см3 и 1,0; 2,0; 3,0; 4,0; 5,0 см3 рабочего раствора 20,0 мкг/см3. Доводят раствором серной кислоты концентрации 1,4 моль/дм3 (2,8 н) до 10,0 см3, добавляют полиэтиленовой пипеткой 1,5 см3 раствора фтористоводородной кислоты 7,5 моль/дм3, 25,0 см3 толуола, добавляют из бюретки 11,0 см3 раствора бриллиантового зеленого и встряхивают в течение 60 с на электромеханическом встряхивателе или вручную. После расслаивания фаз в течение 60 - 90 с 10 см3 экстракта помещают в центрифужную пробирку и центрифугируют в течение 3 мин со скоростью 3000 мин-1.

    Оптическую плотность измеряют на КФК-2 в кюветах с толщиной слоя поглощения 5,0 мм в интервале 20 - 100 мкг пятиокиси тантала и 30,0 мм в интервале 4 - 20 мкг пятиокиси тантала при λmax = (590 ± 10) нм. В качестве раствора сравнения применяют толуол.

    Одновременно через все стадии проводят два параллельных контрольных опыта. Оптическая плотность контрольного опыта не должна превышать 0,03 в кювете 30 мм и 0,005 - в кювете 5 мм. По полученным данным строят два градуировочных графика.

    4.3.3.3. Проведение измерений

    Пробу массой 0,1000 г, взвешенную с погрешностью не более 0,0005 г, помещают во фторопластовый стакан, добавляют полиэтиленовой пипеткой 10 см3 концентрированной фтористоводородной кислоты, затем пипеткой 2,0 см3 азотной кислоты и 8,0 см3 концентрированной серной кислоты, нагревают на плитке до начала выделения паров серной кислоты, затем продолжают нагрев еще 2 - 3 мин. Стаканы охлаждают до температуры (25 ± 5) °С, добавляют 3,0 г сульфата аммония, разбавляют водой до 10 см3 и переводят в мерную колбу вместимостью 100 см3, доводят водой до метки и перемешивают 30 - 40 с.

    Аликвотную часть полученного раствора, содержащую 4 - 100 мкг пятиокиси тантала, помещают в полиэтиленовый цилиндр вместимостью 60 см3, доводят раствором серной кислоты концентрации 5 моль/дм3 до 10,0 см3, добавляют 1,5 см3 раствора фтористоводородной кислоты концентрации 7,5 моль/дм3 и оставляют на 8 - 10 мин. Далее добавляют пипеткой 25,0 см3 толуола, 11,0 см3 раствора бриллиантового зеленого и производят экстракцию, как описано в п. 4.3.3.2. После расслаивания фазы разделяют и экстракт в количестве 20 - 25 см3 отмывают. Добавляют 10,5 см3 раствора для отмывки (полиэтиленовой пипеткой), 10,0 см3 раствора бриллиантового зеленого из бюретки и встряхивают, как описано в п. 4.3.3.2. После расслаивания фазы разделяют и экстракт в количестве не менее 16,0 см3 вновь подвергают операции отмывки. После расслаивания фаз 10 см3 экстракта помещают в центрифужную пробирку и центрифугируют в течение 3 мин со скоростью 3000 об/мин.

    Оптическую плотность экстракта измеряют на КФК-2, как описано в п. 4.3.3.2.2. В закрытых полиэтиленовых пробирках экстракты стабильны в течение 4 ч. Допускается проведение экстракции и отмывки экстрактов одновременно в шестнадцати пробирках. Массу пятиокиси тантала определяют по градуировочному графику.

    4.3.3.4. Обработка результатов

    Массовую долю тантала (X) в процентах вычисляют по формуле

    x016.gif

    где m - масса пятиокиси тантала, найденная по градуировочному графику, мкг;

    m1- масса навески пробы, г;

    a - аликвотная часть раствора, отбираемая для экстракции, см3;

    V - объем мерной колбы, равный 100 см3;

    1,221 - коэффициент пересчета.

    За результат измерений принимают среднее арифметическое результатов двух параллельных определений.

    Допускаемые расхождения результатов двух параллельных определений не должны превышать значений допускаемых расхождений, приведенных в табл. 7и.

    4.3.3.5. Контроль правильности анализа

    Контроль правильности анализа проводят методом добавок.

    Суммарная массовая доля тантала в пробе с добавкой должна быть не меньше утроенного значения нижней границы определяемых массовых долей и не больше верхней границы определяемых массовых долей.

    Таблица 7и

    Массовая доля тантала, %

    Допускаемые расхождения, %

    0,02

    0,01

    0,05

    0,01

    0,10

    0,02

    Суммарное содержание тантала 1) в пробе с добавкой в процентах вычисляют по формуле

    x018.gif

    где Хан - массовая доля тантала в пробе, %;

    m1- масса тантала, введенная с добавкой, мкг;

    m2- масса навески пробы, г.

    Анализ считают правильным (Р = 0,95), если разность большей и меньшей из двух величин Х1и результата анализа пробы с добавкой не превышает

    x020.gif

    где d1- допускаемое расхождение между результатами двух параллельных определений в пробе без добавки;

    d2- допускаемое расхождение между результатами двух параллельных определений в пробе с добавкой.

    4.3.1 - 4.3.3.5. (Введены дополнительно, Изм. № 1).

    Источник: ГОСТ 26252-84: Порошок ниобиевый. Технические условия оригинал документа

    Англо-русский словарь нормативно-технической терминологии > CuO

  • 7 combined blast

    1. комбинированное дутье

     

    комбинированное дутье
    Горячее, обогащенное кислородом, применяемое с вдуваемыми в печь газообразными, жидкими или тв. топливными добавками или горячими восстановит. газами. Термин «к. д.», предлож. А. Н. Раммом, получил распростр. только в русской технической литературе. Нагрев дутья перед подачей его в домен. печь, предлож. Нельсоном в 1828 г., был реализован в 1829 г. в Шотландии. Обогащение домен, дутья кислородом запатентовано в 1876 г. Г. Бессемером. Широкое применение его при выплавке передельного чугуна стало возможным и целесообр. только при вдувании в домен, печи топливных добавок, в первую очередь природного газа (ПГ), который впервые применили в 1957 г. на домен, печи № 4 завода им. Петровского в Днепропетровске, хотя вдувать в домен. печи ПГ, мазут и нефть предложено Барнетом еще в 1838 г.
    Обогащение дутья кислородом интенсифицирует горение топлива в домен. печи и увеличивает ее произв-ть на 2,5-3,5 % на каждый дополнит. 1 % кислорода в дутье. Топливные добавки вдувают в домен. печь с целью замены ими кокса. Коэфф. замены кокса топливными добавками зависят от их химич. состава и содержания углерода в коксе, а тж. от условий домен. плавки, при к-рых применяются топливные добавки, и от их расхода. Коэфф. замены кокса ПГ составляют 0,6-0,9 кг/м3 (при содержании метана в ПГ 93-96 % и углерода в коксе 85—88 %). Коэфф. замены кокса кокс, газом 0,4—0,65 кг/м3. Коэфф. замены кокса мазутом в зависимости от состава мазута и его расхода 0,9-1,7 кг/кг. Коэфф. замены кокса пылеугольным топливом сильно зависят от содержания золы и летучих вещ-в в угле: 0,5—1,2 кг/кг. Вдувание горячих восстановит, газов пока не нашло постоянного промышл. применения. Начиная с 70-х годов в странах, где применение в домен. печах угля экономич. выгоднее применения природ. газа, все более широко распростр. вдувание пылеугольного топлива (ПУТ). Достигнутый расход ПУТ на домен. печах составляет 150-200 кг/т. Отрабатывается технология плавки с вдуванием 250— 300 кг ПУТ/т чугуна. Разрабатыв. технология «кислородной» домен. плавки, предусматрив. вдувание 300-350 кг ПУТ /(т • ч) при использов. кислородного (90—95 % О2) дутья или высокообогащенного кислородом (до 60 % О2) дутья.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > combined blast

  • 8 arc furnace

    1. Дуговая электропечь (электротермическое устройство)
    2. дуговая электропечь
    3. дуговая печь

     

    дуговая печь

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

     

    дуговая электропечь
    Электропечь, в которой металл плавится за счет тепла от электрической дуги, горящей между электродами и металлом или между электродами.
    [ ГОСТ 18111-93]

    дуговая электропечь (электротермическое устройство)
    Электропечь (электротермическое устройство), в которой электротермический процесс осуществляется дуговым нагревом
    [ ГОСТ 16382-87

    печь дуговая
    Электрическая печь, в которой теплогенерацию создают электрической дугой постоянного или переменного тока.
    Дуговые печи применяют для выплавки стали (тип ДС), чугуна (тип ДЧ), цветных металлов (тип ДМ), ферросплавов (ферросплавные печи) и других материалов.
    Дуговая сталеплавильная печь по сравнению с мартеновской печкой имеет ряд преимуществ. В дуговой печи можно получить более высокую температуру, чем в мартенах, что и требуется для получения легированных сталей. Это позволяет получать тугоплавкие сплавы. В дуговой печи отсутствует окислительное пламя, что позволяет создать в печах восстановительную атмосферу (газовую среду печи), а также обеспечивает меньший по сравнению с мартеновской печью угар легирующих элементов. В электродуговых печах можно выплавлять сталь с разнообразным содержанием углерода при любом количестве легирующих элементов, а также получать на рядовой шихте металл с весьма низким содержанием серы. В этом отношении дуговые печи идеально отвечали задачам производства высококачественных и легированных сталей.
    Первые лабораторные дуговые печи были построены во второй половине XIX в. (фр. физик Депре, химик Пишон, нем. инж. В. Сименс, русский инж. Н. Г. Славянов и др.).
    Первые промышленные дуговые печи были построены в 1898 г. фр. инж. Э. Стассано для выплавки чугуна емкостью 800 кг и в 1899 г. фр. инж. П. Эру для плавки стали емкостью до 3000 кг и мощностью до 450 кВт.

    Дуговые печи являются печами-теплообменниками с радиационным режимом тепловой работы. В зависимости от условий горения электрической дуги различают:
    - дуговую печь прямого действия, в которой электрическая дуга горит между вертикальным электродом и металлом (с зависимой дугой). Такие печи применяются в черной металлургии;
    - дуговую печь косвенного действия, в которой электрическая дуга горит между двумя горизонтальными электродами над металлом (с независимой дугой). Такие печи иногда применяют в цветной металлургии;
    - дуговую печь с закрытой (погруженной) дугой, в которой электрические дуги горят под слоем твердой шихты или жидкого шлака, куда погружены вертикальные электроды. Такие печи применяют для произвоства металлов и сплавов из руд (рудно-термические печи). Дуговые печи работают при атм. давлении (0,1 МПа), в разреженных парах переплавляемых металлов с давлением до 1 Па (вакуумно-дуговые печи) или в плазмообразующих газах (плазменные печи).

    В зависимости от рода электрического тока дуговая печь может быть постоянного и переменного тока как однофазного, так и трехфазного (с тремя или шестью вертикальными электродами).
    [ http://www.manual-steel.ru/eng-a.html]

    Тематики

    Обобщающие термины

    EN

    DE

    FR

    20. Дуговая электропечь (электротермическое устройство)

    D. Elektrischer Lichtbogenofen

    E. Arc furnace

    F. Four a arc

    Электропечь (электротермическое устройство), в которой электротермический процесс осуществляется дуговым нагревом

    Источник: ГОСТ 16382-87: Оборудование электротермическое. Термины и определения оригинал документа

    Англо-русский словарь нормативно-технической терминологии > arc furnace

  • 9 EAF

    1. электронно-дуговая печь
    2. дуговая электропечь

     

    дуговая электропечь
    Электропечь, в которой металл плавится за счет тепла от электрической дуги, горящей между электродами и металлом или между электродами.
    [ ГОСТ 18111-93]

    дуговая электропечь (электротермическое устройство)
    Электропечь (электротермическое устройство), в которой электротермический процесс осуществляется дуговым нагревом
    [ ГОСТ 16382-87

    печь дуговая
    Электрическая печь, в которой теплогенерацию создают электрической дугой постоянного или переменного тока.
    Дуговые печи применяют для выплавки стали (тип ДС), чугуна (тип ДЧ), цветных металлов (тип ДМ), ферросплавов (ферросплавные печи) и других материалов.
    Дуговая сталеплавильная печь по сравнению с мартеновской печкой имеет ряд преимуществ. В дуговой печи можно получить более высокую температуру, чем в мартенах, что и требуется для получения легированных сталей. Это позволяет получать тугоплавкие сплавы. В дуговой печи отсутствует окислительное пламя, что позволяет создать в печах восстановительную атмосферу (газовую среду печи), а также обеспечивает меньший по сравнению с мартеновской печью угар легирующих элементов. В электродуговых печах можно выплавлять сталь с разнообразным содержанием углерода при любом количестве легирующих элементов, а также получать на рядовой шихте металл с весьма низким содержанием серы. В этом отношении дуговые печи идеально отвечали задачам производства высококачественных и легированных сталей.
    Первые лабораторные дуговые печи были построены во второй половине XIX в. (фр. физик Депре, химик Пишон, нем. инж. В. Сименс, русский инж. Н. Г. Славянов и др.).
    Первые промышленные дуговые печи были построены в 1898 г. фр. инж. Э. Стассано для выплавки чугуна емкостью 800 кг и в 1899 г. фр. инж. П. Эру для плавки стали емкостью до 3000 кг и мощностью до 450 кВт.

    Дуговые печи являются печами-теплообменниками с радиационным режимом тепловой работы. В зависимости от условий горения электрической дуги различают:
    - дуговую печь прямого действия, в которой электрическая дуга горит между вертикальным электродом и металлом (с зависимой дугой). Такие печи применяются в черной металлургии;
    - дуговую печь косвенного действия, в которой электрическая дуга горит между двумя горизонтальными электродами над металлом (с независимой дугой). Такие печи иногда применяют в цветной металлургии;
    - дуговую печь с закрытой (погруженной) дугой, в которой электрические дуги горят под слоем твердой шихты или жидкого шлака, куда погружены вертикальные электроды. Такие печи применяют для произвоства металлов и сплавов из руд (рудно-термические печи). Дуговые печи работают при атм. давлении (0,1 МПа), в разреженных парах переплавляемых металлов с давлением до 1 Па (вакуумно-дуговые печи) или в плазмообразующих газах (плазменные печи).

    В зависимости от рода электрического тока дуговая печь может быть постоянного и переменного тока как однофазного, так и трехфазного (с тремя или шестью вертикальными электродами).
    [ http://www.manual-steel.ru/eng-a.html]

    Тематики

    Обобщающие термины

    EN

    DE

    FR

     

    электронно-дуговая печь

    [Я.Н.Лугинский, М.С.Фези-Жилинская, Ю.С.Кабиров. Англо-русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.]

    Тематики

    • электротехника, основные понятия

    EN

    Англо-русский словарь нормативно-технической терминологии > EAF

  • 10 electric arc furnace

    1. дуговая электропечь

     

    дуговая электропечь
    Электропечь, в которой металл плавится за счет тепла от электрической дуги, горящей между электродами и металлом или между электродами.
    [ ГОСТ 18111-93]

    дуговая электропечь (электротермическое устройство)
    Электропечь (электротермическое устройство), в которой электротермический процесс осуществляется дуговым нагревом
    [ ГОСТ 16382-87

    печь дуговая
    Электрическая печь, в которой теплогенерацию создают электрической дугой постоянного или переменного тока.
    Дуговые печи применяют для выплавки стали (тип ДС), чугуна (тип ДЧ), цветных металлов (тип ДМ), ферросплавов (ферросплавные печи) и других материалов.
    Дуговая сталеплавильная печь по сравнению с мартеновской печкой имеет ряд преимуществ. В дуговой печи можно получить более высокую температуру, чем в мартенах, что и требуется для получения легированных сталей. Это позволяет получать тугоплавкие сплавы. В дуговой печи отсутствует окислительное пламя, что позволяет создать в печах восстановительную атмосферу (газовую среду печи), а также обеспечивает меньший по сравнению с мартеновской печью угар легирующих элементов. В электродуговых печах можно выплавлять сталь с разнообразным содержанием углерода при любом количестве легирующих элементов, а также получать на рядовой шихте металл с весьма низким содержанием серы. В этом отношении дуговые печи идеально отвечали задачам производства высококачественных и легированных сталей.
    Первые лабораторные дуговые печи были построены во второй половине XIX в. (фр. физик Депре, химик Пишон, нем. инж. В. Сименс, русский инж. Н. Г. Славянов и др.).
    Первые промышленные дуговые печи были построены в 1898 г. фр. инж. Э. Стассано для выплавки чугуна емкостью 800 кг и в 1899 г. фр. инж. П. Эру для плавки стали емкостью до 3000 кг и мощностью до 450 кВт.

    Дуговые печи являются печами-теплообменниками с радиационным режимом тепловой работы. В зависимости от условий горения электрической дуги различают:
    - дуговую печь прямого действия, в которой электрическая дуга горит между вертикальным электродом и металлом (с зависимой дугой). Такие печи применяются в черной металлургии;
    - дуговую печь косвенного действия, в которой электрическая дуга горит между двумя горизонтальными электродами над металлом (с независимой дугой). Такие печи иногда применяют в цветной металлургии;
    - дуговую печь с закрытой (погруженной) дугой, в которой электрические дуги горят под слоем твердой шихты или жидкого шлака, куда погружены вертикальные электроды. Такие печи применяют для произвоства металлов и сплавов из руд (рудно-термические печи). Дуговые печи работают при атм. давлении (0,1 МПа), в разреженных парах переплавляемых металлов с давлением до 1 Па (вакуумно-дуговые печи) или в плазмообразующих газах (плазменные печи).

    В зависимости от рода электрического тока дуговая печь может быть постоянного и переменного тока как однофазного, так и трехфазного (с тремя или шестью вертикальными электродами).
    [ http://www.manual-steel.ru/eng-a.html]

    Тематики

    Обобщающие термины

    EN

    DE

    FR

    Англо-русский словарь нормативно-технической терминологии > electric arc furnace

  • 11 carburization

    Карбюризация.
    Абсорбция и диффузия углерода в твердых стальных сплавах, путем нагрева до температуры обычно выше Ас3, в контакте с подходящим углеродосодержащим материалом. При цементации возникает градиент углерода, распространяющийся вглубь от поверхности, что позволяет поверхностному слою приобрести твердость после охлаждения непосредственно с температуры карбюризации в печи или на воздухе при комнатной температуре последующей повторной аустенитизацией закалкой.

    Англо-русский металлургический словарь > carburization

  • 12 carburizing

    1. карбюризация

     

    карбюризация
    Абсорбция и диффузия углерода в твердых стальных сплавах, путем нагрева до температуры обычно выше Ас3, в контакте с подходящим углеродосодержащим материалом. При цементации возникает градиент углерода, распространяющийся вглубь от поверхности, что позволяет поверхностному слою приобрести твердость после охлаждения непосредственно с температуры карбюризации в печи или на воздухе при комнатной температуре последующей повторной аустенитизацией закалкой.
    [ http://www.manual-steel.ru/eng-a.html]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > carburizing

  • 13 breakout

    2) Медицина: вспышка (инфекции)
    3) Разговорное выражение: убежать от рутины
    5) Техника: выход факела из горловины бессемеровского конвертера, место отвода (из многожильного кабеля), обрыв; разрыв, отвинчивание, прорыв (воды, плывуна, металла из печи), развинчивание (резьбового соединения)
    6) Экономика: прорыв (развитие рыночной конъюнктуры за пределы, когда возникает сопротивление со стороны продавцов или покупателей)
    8) Металлургия: прорыв футеровки, прорыв металла (из печи, из литейной формы), выход факела из горловины бессемеровского конвертера (при выгорании углерода)
    9) Вычислительная техника: врезка кабеля
    10) Нефть: демонтаж буровой колонны, ограничительный, вывалы на стенках скважины по оси максимального напряжения в пласте в результате овализации ствола скважины, (breaking-out) отвинчивание, (breaking-out) развинчивание, (breaking-out) раскрепление
    11) Космонавтика: отвод (Шаттла), увод
    13) Силикатное производство: разлом
    16) Бурение: раскрепитель
    17) Нефтегазовая техника раскрепление
    19) Макаров: прорыв (воды, плывуна), отвинчивание (резьбового соединения)
    20) Безопасность: массовое проявление (напр. недовольства), побег (напр. недовольства; из тюрьмы)
    21) Логистика: распределение

    Универсальный англо-русский словарь > breakout

  • 14 backing

    1. рассеивающее вещество
    2. подложка тензорезистора
    3. подкладка
    4. основа вкладыша подшипника
    5. основа (металлургия)
    6. задний ход
    7. дублирующий слой
    8. дублирование (в консервации документов)
    9. вращение в обратную сторону
    10. внутренняя сторона обмуровки печи

     

    внутренняя сторона обмуровки печи

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    вращение в обратную сторону

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    дублирование
    Наслоение листового реставрационного материла на одну сторону документа, не имеющую текста (изображения)
    [ГОСТ 7.48-2002] 

    Тематики

    EN

     

    задний ход

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    основа
    1. В шлифовке — материал (бумага, ткань или волокно), который служит основой для покрытия абразивом.
    2. В сварке -материал, помещенный ниже или позади сварного шва для улучшения качества металла в корне соединения. Это может быть металлическое подкладное кольцо или лента; или неметалл типа углерода, гранулированного флюса, а также защитная газовая среда.
    3. В гладких опорах — та ее часть, к которой материал опоры присоединен металлургическим путем.
    [ http://www.manual-steel.ru/eng-a.html]

    Тематики

    EN

     

    основа вкладыша подшипника (4.5.1)
    основа вкладыша

    Часть многослойного вкладыша подшипника, на которую наносится подшипниковый материал и которая обеспечивает ему требуемую прочность и/или жесткость.
    3185
    [ ГОСТ ИСО 4378-1-2001]

    Тематики

    Обобщающие термины

    Синонимы

    EN

    FR

     

    подкладка
    Деталь или приспособление, устанавливаемые при сварке плавлением под кромки свариваемых частей
    [ ГОСТ 2601-84]

    подкладка
    В сварке - деталь или приспособление, устанавливаемые под кромки свариваемых частей для формования, защиты от окисления обратной стороны сварного шва и предотвращения протекания металла сварочной ванны
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    Тематики

    • сварка, резка, пайка

    EN

    DE

    FR

     

    подложка тензорезистора
    подложка

    Несущий элемент конструкции тензорезистора, на котором закреплены чувствительный элемент и выводы тензорезистора.
    [ ГОСТ 20420-75

    Тематики

    Синонимы

    EN

    DE

    FR

     

    рассеивающее вещество

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

    3.4 дублирующий слой (backing): Слой тканого или нетканого синтетического или минерального полотна или другого материала, нанесенный на нижнюю поверхность полотна материала [см. рисунок 2d)].

    Источник: ГОСТ EN 1849-2-2011: Материалы кровельные и гидроизоляционные гибкие полимерные (термопластичные или эластомерные). Методы определения толщины и массы на единицу площади

    Англо-русский словарь нормативно-технической терминологии > backing

  • 15 carbon pickup

    Универсальный англо-русский словарь > carbon pickup

  • 16 fix

    [fɪks] 1. гл.
    1) устанавливать; прикреплять; укреплять, закреплять

    The workmen fixed the antenna to the roof of the house. — Рабочие укрепили антенну на крыше дома.

    Syn:
    2) приводить в порядок; налаживать, регулировать; ремонтировать, чинить; подготавливать, готовить

    You'd better call someone to fix that leak. — Вы бы лучше кого-нибудь пригласили, чтобы заделать эту течь.

    Syn:
    3) густеть; оседать; твердеть; застывать

    Is something added to fix the cement? — Что-нибудь добавлено, чтобы цемент затвердел?

    Syn:
    4) хим. связывать, сгущать
    Syn:
    5) фото закреплять, фиксировать
    Syn:
    6) хим.; биол. усваивать азот или двуокись углерода из атмосферы в процессе обмена веществ (в частности, при фотосинтезе)
    7) приготовить, состряпать (завтрак и т. п.)

    Sarah fixed some food for us. — Сара состряпала нам кое-что поесть.

    Let me fix you a drink. — Давай я сделаю тебе что-нибудь выпить.

    Syn:
    8) разг. устраивать; улаживать

    It's fixed. He's going to meet us at the airport. — Всё устроено. Он собирается встретить нас в аэропорту.

    They thought that their relatives would be able to fix the visas. — Они полагали, что их родственники смогут сделать им визы.

    He vanished after you fixed him with a job. — Он исчез после того, как ты устроил его на работу.

    Can you fix it with the Minister so that the meeting will be delayed? — Ты можешь договориться с министром о том, чтобы отложить встречу?

    to fix oneself in a place — устроиться, поселиться где-л.

    10) разг. подстроить, организовать (с помощью взятки и т. п.); договориться (тайно, нелегально)

    to fix a game — подтасовать игру; договориться (предложить за выигрыш взятку и т. п.)

    We didn't "fix" anything. It'll be seen as it happens. — Мы ни о чём не "договаривались". Всё будет видно по игре.

    Syn:
    rig II 2.
    11) разг. собираться, намереваться

    I'm fixing to speak to her. — Я намерен поговорить с ней.

    12) устанавливать, назначать (срок, цену и т. п.)

    The dealer fixed the price at $50. — Торговец установил цену в 50 долларов.

    The date of the election was fixed. — Дата выборов была установлена.

    Syn:
    13) биол. добиваться того, что некоторый признак или ген присутствует во всех поколениях ( того или иного растения или существа) ниже данного

    He had not been able to fix his position. — Он не мог определить, где он находится.

    The satellite fixes positions by making repeated observations of each star. — Спутник определяет местоположение с помощью повторяющихся наблюдений за каждой звездой.

    Syn:
    15) возлагать (вину, ответственность, расходы и т. п.)

    Investigators fixed the blame for the fire on the night watchman. — Следователи возложили вину за пожар на ночного сторожа.

    Syn:
    16) определять (роль, место, значение и т. п.)
    17) (fix on / upon) устремлять, сосредоточивать (взгляд, внимание на ком-л. / чем-л.); уставиться

    Her eyes fixed themselves on Leonora's face. — Её глаза были прикованы к лицу Леоноры.

    The child kept his eyes fixed on the wall behind him. — Ребёнок не сводил глаз со стены позади него.

    He took her hand and fixed her with a look of deep concern. — Он взял её руку и с глубоким сочувствием устремил на неё взгляд.

    She kept her mind fixed on the practical problems which faced her. — Её мысли были сосредоточены на стоящих перед ней практических задачах.

    18) привлекать ( внимание), быть привлекательным, примечательным
    19) фиксировать, закреплять ( в сознании)

    While the mind is elsewhere, there is no progress in fixing the lessons. — Пока внимание отвлечено на что-то другое, бесполезно пытаться закрепить материал урока.

    20) припирать к стенке, загонять в угол
    21) разг. разделаться, расправиться; прикончить, убить

    If he tries that again I'll really fix him. — Если он ещё раз попробует это сделать, я на самом деле с ним расправлюсь.

    Syn:
    22) эвф. стерилизовать, кастрировать (животных, обычно домашних)
    Syn:
    23) нарк. ширяться ( делать инъекцию наркотика)

    Junkies have looted the drug-stores and fix on every street corner. (W. S. Burroughs, Naked Lunch, 1959) — Наркоманы подмели все аптеки и ширяются на каждом углу. (пер. В.Когана)

    Syn:
    24) ( fix on) выбрать, остановиться на чём-л.

    Have you two fixed on a date for the wedding yet? — Вы уже решили, когда будет ваша свадьба?

    We should fix on a place to stay before we leave home. — Мы должны договориться, где будем ночевать, пока мы ещё не вышли из дому.

    We've fixed on starting tomorrow. — Мы решили, что начнём завтра.

    - fix up 2. сущ.
    1) разг. дилемма; затруднение, затруднительное положение, неприятная ситуация

    fine / nice / pretty fix — достаточно неприятная ситуация

    After accepting two invitations for the same evening he was really in a fix. — После того, как он принял два приглашения на один и тот же вечер, он действительно оказался в затруднительном положении.

    - be in a fix
    - get into a fix
    Syn:
    2) амер.; разг. (временное) решение проблемы

    Many of those changes could just be a temporary fix. — Многие из этих изменений могли бы быть просто временной мерой.

    3)
    а) местоположение, позиция (судна, самолёта и т. п.), определяемая по ориентирам, наблюдениям или по радио

    The army hasn't been able to get a fix on the transmitter. — Армия не смогла определить местоположение по радиопередатчику.

    Syn:
    4) устанавливаемый дважды в день на лондонской бирже драгоценных металлов курс золота
    5) точное определение, точное понимание

    It's been hard to get a steady fix on what's going on. — Было трудно точно определить, что же происходит.

    6) амер. (рабочее) состояние, положение
    7)
    а) разг. доза, определённое количество; пайка

    The trouble with her is she needs her daily fix of publicity. — Её беда в том, что ей необходимо, чтобы на неё ежедневно обращали внимание.

    I need my fix of sugar, sweet, and chocolate. — Мне нужна моя порция сахара, сладостей и шоколада.

    б) нарк. доза, инъекция ( наркотика); кайф, нахождение под кайфом

    to get a fix — уколоться, ширнуться

    The book ends with the junkie heading for South America, searching for the drug yage, and "the final fix". — Книга заканчивается на том, что наркоман отправляется в Южную Америку за наркотиком под названием "яг", за "последним кайфом" (из рецензии на книгу У.Берроуза "Джанки")

    8) амер.; разг. взятка; подкуп; сговор (между политиками; между полицейскими и преступниками и пр.)
    9) метал. заправочный материал для пудлинговой печи

    Англо-русский современный словарь > fix

  • 17 argon carbon refining-process

    1. АКР-процесс

     

    АКР-процесс
    Способ произв-ва низкоуглеродистой высокохромистой стали с использованием продувки жидкого расплава кислородом и его смесью с инертными газами в конвертере спец. конструкции. Технологич. схема процесса АКР предусматривает выплавку высоколегир. Сг- и Ni-полупродукта в дуговой печи с содержанием 0,8—1,5 % С, выпуск его в ковш, перелив в рафинировочный агрегат и продувку расплава аргоно-кислородной смесью. При продувке разбавляют кислород нейтральным газом, что снижает рсо и вызывает эффективное обезуглероживание (< 0,01 % С) при относительно низком угаре Сг. По окончании обезуглероживания расплав продувают чистым Аг, раскисляют шлак и соответствующими корректирующими добавками доводят хим. состав стали до заданного. Расход Аг и О2 составляет 15-50 м3 на 1 т стали (каждого) в зависимости от конечного содержания углерода в металле (см. АОД-процесс). Используются также другие модификации АКР: с добавкой в смесь для продувки водяного пара (КЛУ-процесс, Швеция) или природного газа и азота (ГКР-процесс, Украина).
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > argon carbon refining-process

  • 18 briquettes

    1. металлизованные брикеты
    2. железорудные брикеты
    3. брикеты

     

    брикеты
    1. Спрессов. в виде кирпича, плитки или кусков мелкие материалы (уголь, руда и т.п.) с использованием или без добавок. Б. должны быть водо- и атмосферостойкие, высоко прочные, не содержать вредных веществ, иметь высокие металлургич. св-ва.
    2. В порошковой металлургии - пористые полуфабрикаты из порошкового материала или стружки, получен. брикетированием.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

     

    железорудные брикеты
    Брикеты, состоящие из железосодержащих материалов; сырье для домен. и мартен. печей.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

     

    металлизованные брикеты
    Железорудные б., в к-рых часть оксидов железа восстановлена до железа, имеют высокую механич. прочность - 10-15 кН/брикет, обусловл. прочным металлич. каркасом в структуре и отсутствием гематита. М. б. со степенью металлизации до 3 % называют вюститными брикетами.
    М. б. получают термобрикетированием руднотопливных шихт, а также концентратов предварительно восстановл. водородом и/или оксидом углерода в цилиндрич. реакторах с кипящим слоем. Каждые 10 % степени металлизации сырья позволяют повысить произв-ть домен. печи на 5—9 % при экономии кокса 5-8 %.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > briquettes

  • 19 sponge iron

    1. губчатое железо

     

    губчатое железо
    Пористая масса с высоким содержанием железа, получ. восстановлением оксидов при t < tпл. Сырье — ж. руда, окатыши, железорудный концентрат и прокатная окалина, а восстановитель - углерод (некоксующийся уголь, антрацит, торф, сажа), газы (водород, конверторов., природ. и др. горючие газы) или их сочетание. Г. ж. для выплавки качеств. стали в электропечах должно иметь степень металлизации рем/реобш ^ 85 % (желат. 92-95 %) и пустой породы < 4—5 %. Содержание углерода зависит от способа произ-ва г. ж. В процессах FIOR, SL-RN и HIB получают г. ж. с 0,2-0,7 % С, в процессе Midrex 0,8-2,5 % С. При газ. восстановлении содерж. 0,01—0,015 % S. Фосфор присутствует в виде оксидов и после расплавления переходит в шлак. Из г. ж., получаемого способами H-Iron, Heganes и Сулинского мет. з-да с 97—99 % FeM механич. измельчением с последующим отжигом, изготовляют жел. порошок. Общая пористость г. ж. из руды — 45— 50 %, из окатышей 45-70 %. Насыпная масса - 1,6-2,1 т/м3. Для г. ж. характерна большая уд. поверхность, к-рая, включая внутр. пов-ть открытых пор, сост. 0,2-1 м3/г. Г. ж. имеет повыш. склонность к вторичному окислению. При темп-pax в печи ниже 550—575 °С охлажд. металлизов. продукт пирофорен (самовозгорается на воздухе при комн. темп-ре). В совр. процессах г. ж. получают при t > 700 °С, что снижает его активность и позволяет хранить на воздухе (в отсутствии влаге) без заметного снижения степени металлизации. Г. ж., произвед. по высокотемп-рной технологии, при t > 850 °С, обладает низкой склонностью ко вторичному окислению при увлажнении, что обеспеч. безопасную транспортировку его в открытых вагонах, перевозку морским (речным) транспортом, хранение в открытых штабелях.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > sponge iron

  • 20 blast-furnace gas

    1. колошниковый
    2. доменный газ

     

    доменный газ
    колошниковый газ
    Побочный продукт домен. произ-ва, низкокалорийный газ, содержащий 30-35 % горючих составляющих и большое кол-во балласта (N2 и СО2). Примерный состав сухого д. г., об. %: 12 СО2; 30 СО; 0,2 СН4; 3 Н2; 54,8 N2. Темп-ра д. г. на выходе из печи 250-350 °С, содержание пыли в д. г. (колошниковая пыль) 15-60 г/м3, уд. теплота сгорания 3,6-4,6 МДж /м3. Д. г. ядовит и взрывоопасен при концентрации 35—75 об. %. Выход д. г., определ. уд. расходом углерода, 1500-2500 м3/т чугуна. Используется на металлургич. заводах как низкокалорийное топливо. Д. г. часто называют колошниковым.
    [ http://metaltrade.ru/abc/a.htm]

    Тематики

    Синонимы

    EN

    Англо-русский словарь нормативно-технической терминологии > blast-furnace gas

См. также в других словарях:

  • Углерода окись — Монооксид углерода Общие Систематическое наименование Монооксид углерода Химическая формула …   Википедия

  • УГЛЕРОДА ДИОКСИД — (оксид углерода(IV), ангидрид угольной кислоты, углекислый газ) CO2, хорошо известный пузырящийся ингредиент газированных безалкогольных напитков. Человек знал о целебных свойствах шипучей воды из природных источников с незапамятных времен, но… …   Энциклопедия Кольера

  • Печи комнатные — и очаги имеют назначение нагревать не только лучистой теплотой горящего топлива, но и тем теплом, которое оно передает своим продуктам горения. Для этого заставляют дым проходить по более или менее длинным оборотам дымовой трубы, передающим тепло …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Печи комнатные* — и очаги имеют назначение нагревать не только лучистой теплотой горящего топлива, но и тем теплом, которое оно передает своим продуктам горения. Для этого заставляют дым проходить по более или менее длинным оборотам дымовой трубы, передающим тепло …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • ПЕЧИ — Промышленные П. устройства с камерой, огражденной от окружающей среды, предназначенные для получения материалов и изделий при тепловом воздействии на исходные в ва. Теплота выделяется в результате горения топлива или превращения электрич. (реже… …   Химическая энциклопедия

  • УГЛЕРОДА ОКСИД — угарный газ, СО ядовитый газ без цвета и запаха; плотн. 1,25 кг/м3; tкип 191,5 °С, tпл 205 °С. В воде плохо растворим. Горит на воздухе (2СО + O2 = 2CO2) с выделением большого кол ва теплоты. В пром сти У. о. получают газификацией твёрдых топлив; …   Большой энциклопедический политехнический словарь

  • Монооксид углерода — Общие Систематическое наименование Монооксид углерода Химическая формула …   Википедия

  • Моноксид углерода — Монооксид углерода Общие Систематическое наименование Монооксид углерода Химическая формула …   Википедия

  • Моноокись углерода — Монооксид углерода Общие Систематическое наименование Монооксид углерода Химическая формула …   Википедия

  • Окись углерода — Монооксид углерода Общие Систематическое наименование Монооксид углерода Химическая формула …   Википедия

  • Оксид углерода (II) — Монооксид углерода Общие Систематическое наименование Монооксид углерода Химическая формула …   Википедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»